• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma da área dos tetraedros

Soma da área dos tetraedros

Mensagempor Pri Ferreira » Seg Abr 09, 2012 16:13

Considerem-se 3 tetraedros regulares t1,t2 e t3. Cada elemento aij da matriz A3x3, representada abaixo é a soma das medidas em metros da altura do tetraedro tj, com a altura do tetraedro tj
A=\begin{pmatrix}
   {a}_{11} & 6 & 8  \\ 
   6 & {a}_{22} & 10  \\
   8 & 10  & {a}_{33}
\end{pmatrix}
A soma das áreas totais dos três tetraedros, em m², é
a)18 \sqrt[]{3}
b)30 \sqrt[]{3}
c)36 \sqrt[]{3}
d)84 \sqrt[]{3}
Ajuda, por favor!!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Soma da área dos tetraedros

Mensagempor LuizAquino » Qui Abr 12, 2012 18:20

Pri Ferreira escreveu:Considerem-se 3 tetraedros regulares t1,t2 e t3. Cada elemento aij da matriz A3x3, representada abaixo é a soma das medidas em metros da altura do tetraedro tj, com a altura do tetraedro tj
A=\begin{pmatrix}
   {a}_{11} & 6 & 8  \\ 
   6 & {a}_{22} & 10  \\
   8 & 10  & {a}_{33}
\end{pmatrix}
A soma das áreas totais dos três tetraedros, em m², é
a)18 \sqrt[]{3}
b)30 \sqrt[]{3}
c)36 \sqrt[]{3}
d)84 \sqrt[]{3}


Eu presumo que o texto do exercício seja: "(...) altura do tetraedro ti, com a altura do tetraedro tj (...)". Note que você escreveu "tj" e "tj".

A altura h de um tetraedro regular de aresta a é tal que:

h = \dfrac{\sqrt{6}}{3}a

Já a área total desse tetraedro regular é tal que:

A_T = \sqrt{3} a^2

Considerando que h1, h2 e h3 sejam as alturas, respectivamente, de t1, t2 e t3, com base na matriz dada no exercício podemos montar o seguinte sistema:

\begin{cases}
h_1 + h_2 = 6 \\
h_1 + h_3 = 8 \\
h_2 + h_3 = 10
\end{cases}

Resolvendo esse sistema você pode determinar cada uma das alturas.

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: