• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma da área dos tetraedros

Soma da área dos tetraedros

Mensagempor Pri Ferreira » Seg Abr 09, 2012 16:13

Considerem-se 3 tetraedros regulares t1,t2 e t3. Cada elemento aij da matriz A3x3, representada abaixo é a soma das medidas em metros da altura do tetraedro tj, com a altura do tetraedro tj
A=\begin{pmatrix}
   {a}_{11} & 6 & 8  \\ 
   6 & {a}_{22} & 10  \\
   8 & 10  & {a}_{33}
\end{pmatrix}
A soma das áreas totais dos três tetraedros, em m², é
a)18 \sqrt[]{3}
b)30 \sqrt[]{3}
c)36 \sqrt[]{3}
d)84 \sqrt[]{3}
Ajuda, por favor!!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Soma da área dos tetraedros

Mensagempor LuizAquino » Qui Abr 12, 2012 18:20

Pri Ferreira escreveu:Considerem-se 3 tetraedros regulares t1,t2 e t3. Cada elemento aij da matriz A3x3, representada abaixo é a soma das medidas em metros da altura do tetraedro tj, com a altura do tetraedro tj
A=\begin{pmatrix}
   {a}_{11} & 6 & 8  \\ 
   6 & {a}_{22} & 10  \\
   8 & 10  & {a}_{33}
\end{pmatrix}
A soma das áreas totais dos três tetraedros, em m², é
a)18 \sqrt[]{3}
b)30 \sqrt[]{3}
c)36 \sqrt[]{3}
d)84 \sqrt[]{3}


Eu presumo que o texto do exercício seja: "(...) altura do tetraedro ti, com a altura do tetraedro tj (...)". Note que você escreveu "tj" e "tj".

A altura h de um tetraedro regular de aresta a é tal que:

h = \dfrac{\sqrt{6}}{3}a

Já a área total desse tetraedro regular é tal que:

A_T = \sqrt{3} a^2

Considerando que h1, h2 e h3 sejam as alturas, respectivamente, de t1, t2 e t3, com base na matriz dada no exercício podemos montar o seguinte sistema:

\begin{cases}
h_1 + h_2 = 6 \\
h_1 + h_3 = 8 \\
h_2 + h_3 = 10
\end{cases}

Resolvendo esse sistema você pode determinar cada uma das alturas.

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}