• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Espacial + PG] Prismas

[Geometria Espacial + PG] Prismas

Mensagempor mayrahusein » Seg Out 17, 2011 16:38

Olá, sou nova por aqui e ando tendo muitas dúvidas com relação a geometria espacial. Tenho uma prova no dia 21/10 em que vai cair Progressão Geométrica, Prismas e Pirâmides, e eu não estou conseguindo resolver os exercícios. A primeira dúvida que quero enviar é de uma questão que envolve Prismas e Progressão Geométrica:

As medidas das três dimensões de um paralelepípedo retângulo estão em P.G. Sabendo que a área total e o volume deste paralelepípedo são, respectivamente, 112 cm² e 64 cm³, calcule as medidas das suas dimensões.

A resposta do gabarito é (2cm, 4 cm e 8cm), mas não consigo chegar nela!
Meus cálculos até agora:

a = xq
b = x
c = x/q

St = 2S1 + 2S2 + 2S3 V = Sb . h
St = 2(xq . x) + 2(x/q . x) + 2(x/q . xq) V = xq . x . x/q
St = 2x²q + 2x²/q + 2x² V = x³
112 = 2x²q + 2x²/q + 2x²
[112 = 2x²(q + 1/q + 1)] (:2)
56 = x²(q + 1/q + 1)

A partir daí dá tudo errado e não sei como continuar! Em que eu estou errando?
mayrahusein
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Out 17, 2011 16:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Segundo ano
Andamento: cursando

Re: [Geometria Espacial + PG] Prismas

Mensagempor Caroline Piccoli » Qui Nov 17, 2011 11:33

Adorei esse problema!!! Muito legal mesmo!!!
Minha resolução:

At= 112 cm²
V= 64 cm³

a1=xq= c
a2= x= l
a3= x/q= h

Descobrindo o valor de x pela fórmula do volume.

V= c.l.h
V= xq.x.x/q
V= x³
64=x³
x=4

Substituindo o valor de x na equação da area total (at)

at= 2xq.x/q + 2.x.x/q+ 2.x.xq
at= 2x²+ 2x²/q + 2x²q
112= 32 + 32/q+ 32q
80= 32/q+32q²/q
80q= 32+32q²
32q² - 80q+32=0

Resolvendo essa equação do segundo grau, obtemos como raízes: q1=2 e q2= 1/2

Substituindo o valor de x e os valores de q encontrados, temos:

a1=c= xq1= 4.2=8 ou a1=c=xq2= 4.1/2=2
a2=l= x= 4
a3= h= x/q1= 4/2=2 ou a3=h= x/q2= 4/1/2= 8

Portanto as dimensões são: 2cm, 4 cm e 8 cm.
Caroline Piccoli
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 17, 2011 11:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D