• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Espacial + PG] Prismas

[Geometria Espacial + PG] Prismas

Mensagempor mayrahusein » Seg Out 17, 2011 16:38

Olá, sou nova por aqui e ando tendo muitas dúvidas com relação a geometria espacial. Tenho uma prova no dia 21/10 em que vai cair Progressão Geométrica, Prismas e Pirâmides, e eu não estou conseguindo resolver os exercícios. A primeira dúvida que quero enviar é de uma questão que envolve Prismas e Progressão Geométrica:

As medidas das três dimensões de um paralelepípedo retângulo estão em P.G. Sabendo que a área total e o volume deste paralelepípedo são, respectivamente, 112 cm² e 64 cm³, calcule as medidas das suas dimensões.

A resposta do gabarito é (2cm, 4 cm e 8cm), mas não consigo chegar nela!
Meus cálculos até agora:

a = xq
b = x
c = x/q

St = 2S1 + 2S2 + 2S3 V = Sb . h
St = 2(xq . x) + 2(x/q . x) + 2(x/q . xq) V = xq . x . x/q
St = 2x²q + 2x²/q + 2x² V = x³
112 = 2x²q + 2x²/q + 2x²
[112 = 2x²(q + 1/q + 1)] (:2)
56 = x²(q + 1/q + 1)

A partir daí dá tudo errado e não sei como continuar! Em que eu estou errando?
mayrahusein
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Out 17, 2011 16:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Segundo ano
Andamento: cursando

Re: [Geometria Espacial + PG] Prismas

Mensagempor Caroline Piccoli » Qui Nov 17, 2011 11:33

Adorei esse problema!!! Muito legal mesmo!!!
Minha resolução:

At= 112 cm²
V= 64 cm³

a1=xq= c
a2= x= l
a3= x/q= h

Descobrindo o valor de x pela fórmula do volume.

V= c.l.h
V= xq.x.x/q
V= x³
64=x³
x=4

Substituindo o valor de x na equação da area total (at)

at= 2xq.x/q + 2.x.x/q+ 2.x.xq
at= 2x²+ 2x²/q + 2x²q
112= 32 + 32/q+ 32q
80= 32/q+32q²/q
80q= 32+32q²
32q² - 80q+32=0

Resolvendo essa equação do segundo grau, obtemos como raízes: q1=2 e q2= 1/2

Substituindo o valor de x e os valores de q encontrados, temos:

a1=c= xq1= 4.2=8 ou a1=c=xq2= 4.1/2=2
a2=l= x= 4
a3= h= x/q1= 4/2=2 ou a3=h= x/q2= 4/1/2= 8

Portanto as dimensões são: 2cm, 4 cm e 8 cm.
Caroline Piccoli
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 17, 2011 11:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?