por comodoro_80 » Sáb Mai 21, 2011 14:09
Preciso de ajuda urgente...
Tenho que calculcar o volume de uma zona esferica, isso eu consigo fazer, o problema é que eu não tenho o valor do raio esfera.
Tenho apenas os valores da zona esferica:
- comprimento da base maior 82.5mm
- comprimento da base menor 53.5mm
- altura entre as bases é de 5.2mm
Será que com esses valores conssigo saber o valor do raio dessa esfera, para assim poder calcular o volume da zona esferica?
Muito obrigado, aguardo retorno breve pois é muito urgente! Obrigado!!
-
comodoro_80
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Mai 21, 2011 13:45
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Informática
- Andamento: formado
por comodoro_80 » Sáb Mai 21, 2011 15:06
Dando uma pesquisada encontrei duas formas de resolver meu problema, uma seria usando uma formula para achar o volume de um zona esferia, mas tb poderia usar uma formula para achar o volume de um tronco de cone mas não seria tão precisa porque o comprimento entre as bases nao é reto..[img]
tronco de cone


[/img]
ou essa da zona esferica que seria perfeita porque a peça que eu preciso saber o volume é esferica..


mas como saber o raio da suposta esfera sabendo só os valores da zona esferica..
estou correto?
-
comodoro_80
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Mai 21, 2011 13:45
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Informática
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- O volume de uma esfera em relação a outra esfera
por Macedo Junior » Sáb Jul 23, 2016 21:01
- 2 Respostas
- 9327 Exibições
- Última mensagem por Macedo Junior

Sáb Jul 23, 2016 23:28
Geometria Plana
-
- Centro e raio da esfera, determine-os.
por apotema2010 » Qua Fev 09, 2011 18:48
- 1 Respostas
- 4776 Exibições
- Última mensagem por LuizAquino

Qua Fev 09, 2011 19:12
Geometria Analítica
-
- Altura do cone inscritível na esfera de raio R
por Luiz 2017 » Sex Set 22, 2017 20:46
- 0 Respostas
- 3282 Exibições
- Última mensagem por Luiz 2017

Sex Set 22, 2017 20:46
Cálculo: Limites, Derivadas e Integrais
-
- Fórmula de volume de uma esfera
por Kelvin Brayan » Dom Mai 01, 2011 21:10
- 2 Respostas
- 3351 Exibições
- Última mensagem por Kelvin Brayan

Dom Mai 01, 2011 21:37
Álgebra Elementar
-
- Volume do cilindro e da esfera
por Pri Ferreira » Sex Mai 18, 2012 23:24
- 0 Respostas
- 2229 Exibições
- Última mensagem por Pri Ferreira

Sex Mai 18, 2012 23:24
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.