por Danilo » Seg Out 22, 2012 00:20
Encontre a equação de um plano que passa pelo ponto P = (2,1,0) e é perpendicular aos planos x+2y-3z+2 = 0 e 2x-y+4z=0.r
Então... o problema é que eu não consigo visualizar planos perpendiculares! Com reta tudo bem... mas com planos não. Sei da equação do plano, sei do vetor a..''normal'' ao plano... sei que a interseçao deles é uma reta... mas não consigo encaixar tudo isso para resolvero exercício. Grato a quem puder ajudar !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MrJuniorFerr » Seg Out 22, 2012 00:59
Para visualizar melhor planos perpendiculares, sugiro que tente analisar com 2/3 folhas de sulfite ou analise pelo livro: Geometria Analítica - Alfredo Steinbruch.
Para encontrar a equação do plano

, que no qual já foi dado um ponto pertencente a ele, você precisa achar o vetor normal a ele. Sabendo que há 2 planos perpendiculares a ele, n1(vetor normal ao plano1) e n2(vetor normal ao plano2), conclui-se que n1 e n2 são paralelos ao plano

, ou seja, fazendo n1 X n2 (produto vetorial), você descobre um vetor perpendicular a n1 e n2 e normal ao plano

, ou seja, você encontrou o vetor n do plano

, agora é só substituir em

, achar o valor de d e você encontrou a equação geral do plano.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por Danilo » Qua Out 24, 2012 20:26
Bom, eu entendi que para encontrar a equação de um plano basta um ponto e a normal deste plano. Sei que a interseção entre dois planos é uma reta. Eu não entendi por que a normal dos planos são paralelos ao plano que queremos encontrar. E também não entendi por que o produto vetorial das outras normais será a normal do plano que queremos encontrar... Grato!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Qui Out 25, 2012 01:35
Você precisa encontrar um vetor que seja normal ao vetor normal de cada um dos planos.
Uma boa forma de fazer isso é calcular o produto vetorial entre os vetores normais, pois ele garante que o vetor encontrado será ortogonal aos vetores dados.
Em símbolos, se

, então

e

. Em termos de produto interno, que é a caracterização usual, temos

.
Encontrado este vetor, você já tem os valores

da equação geral do plano

. Basta substituir o ponto dado e você encontrará

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Danilo » Qui Out 25, 2012 22:32
Obrigado!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Danilo » Qui Out 25, 2012 22:33
Obrigado!!!!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Danilo » Seg Out 29, 2012 16:05
Estou confuso com uma coisa: O que quer dizer quando um vetor é paralelo ao plano? Quer dizer que ele está ''dentro'' do plano? Eu estou com uma dificuldade imensa para desenhar/visualizar isso. Eu entendi os cálculos. Mas não vejo por que o cada normal é paralela a pi. Grato!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Seg Out 29, 2012 18:03
Se for paralelo ao plano pode estar dentro do plano, mas fora também. Pode ser uma reta ortogonal à normal do plano mas que não esteja contida no plano, isto é, não satisfaz a equação dada. De qualquer forma, em nenhum momento foi dito que algum vetor era paralelo a um plano.
Uma forma de visualizar isto é pegar uma caneta e colocar em cima de uma mesa. Agora suba a caneta mantendo a direção original. Você terá um vetor paralelo a um plano sem estar contido nele.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PLANOS - PARALELISMO ENTRE PLANOS
por ubelima » Ter Jun 19, 2012 19:22
- 2 Respostas
- 5693 Exibições
- Última mensagem por ubelima

Qua Jun 20, 2012 01:01
Geometria Analítica
-
- [Interseção entre planos]
por sulafuly » Dom Mar 02, 2014 01:14
- 0 Respostas
- 1920 Exibições
- Última mensagem por sulafuly

Dom Mar 02, 2014 01:14
Geometria Analítica
-
- [GA] Ângulos entre planos
por Larissa28 » Dom Abr 05, 2015 10:03
- 3 Respostas
- 1667 Exibições
- Última mensagem por adauto martins

Sex Abr 10, 2015 11:29
Geometria Analítica
-
- Interseção entre planos
por marinasaboia » Sex Jan 08, 2016 14:44
- 1 Respostas
- 3109 Exibições
- Última mensagem por RuuKaasu

Sex Jan 15, 2016 21:52
Geometria Analítica
-
- medida angular entre planos
por -civil- » Sáb Jun 18, 2011 13:14
- 1 Respostas
- 2207 Exibições
- Última mensagem por LuizAquino

Sáb Jun 18, 2011 22:56
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.