flaaacs escreveu:Seja P um ponto de abscissa positiva, o ponto de intersecção entre a circunferência de equação x^2 +y^2 -2x -2y -7=0 e a reta de equação y-x-3=0. A distância entre o ponto P e a bissetriz dos quadrantes pares é:
Resposta oficial: 5V2/2
(Cinco raiz de dois sobre dois)
Para determinar a interseção entre a circunferência e a reta, você precisa resolver o sistema:

Após resolver esse sistema (por exemplo, por substituição), você irá determinar dois pontos de interseção. O ponto P será aquele que tiver abscissa positiva (ou seja, coordenada x positiva).
Em seguida, você precisa calcular a distância do ponto P até a reta que contém a bissetriz dos quadrantes pares. A equação dessa reta é dada por y = -x (ou seja, x + y = 0). Para calcular essa distância, lembre-se do seguinte: se você tem o ponto

e a reta

, então a distância entre P e r (que aqui vamos representar por d(P, r)), será dada pela fórmula:

Agora tente concluir o exercício.