• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano

Plano

Mensagempor Claudin » Sex Jul 06, 2012 12:32

Determine a equação do plano que contém o ponto P(1,1,1) e é perpendicular ao vetor (2,-1,8)

Temos o ponto e temos o vetor diretor, portanto a equação seria:

2x-y+8z = ?

O que eu não sei encontrar é a constante após o sinal de igualdade
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Russman » Sex Jul 06, 2012 16:00

Seja um palno que contenha um ponto P(x_{0},y_{0},z_{0}) de vetor normal \overrightarrow{N} = <n_{x},n_{y},n_{z}>.

Agora tome o ponto P=(x,y,z) que tambem pertence ao plano. Assim, o vetor \overrightarrow{PP_{0}}=<x-x_{0},y-y_{0},z-z_{0}> deve ser paralelo ao plano e, portanto, perpendicular a \overrightarrow{N}.

Logo,

\overrightarrow{N} \cdot \overrightarrow{PP_{0}}=0\Rightarrow <n_{x},n_{y},n_{z}> \cdot <x-x_{0},y-y_{0},z-z_{0}>=0,

e disto,

\Rightarrow n_{x}(x- x_{0})+n_{y}(y-y_{0})+n_{z}(z-z_{0})=0.

Se o plano é dado por ax+by+cz+d=0, então

\left\{\begin{matrix}
a=n_{x}\\ 
b=n_{y}\\ 
c=n_{z}\\ 
d=-n_{x}x_{0}-n_{y}y_{0}-n_{z}z_{0}\\ 

\end{matrix}\right.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Plano

Mensagempor Claudin » Sex Jul 06, 2012 16:23

:y:

obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)