• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas

Retas

Mensagempor manuoliveira » Qua Mai 23, 2012 16:28

Calcular o valor de m para que as retas r e s sejam coplanares:
r: y = 2x + 3 e z = 3x - 1
s: (x-1)/2 = y/(-1) = z/m

Quem souber, por favor dê uma ajudinha... obrigada!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Retas

Mensagempor LuizAquino » Qua Mai 23, 2012 20:44

manuoliveira escreveu:Calcular o valor de m para que as retas r e s sejam coplanares:
r: y = 2x + 3 e z = 3x - 1
s: (x-1)/2 = y/(-1) = z/m


Você precisa começar determinando os vetores diretores das retas.

Um vetor diretor de s é fácil perceber que é \vec{d_s} = (2,\,-1,\,m) .

Já para perceber o vetor diretor de r, vamos fazer x = t e montar as seguintes equações paramétricas:

r:\begin{cases}
x = t \\
y = 3 + 2t \\
z = -1 + 3t
\end{cases}

Desse modo, um vetor diretor para a reta r será \vec{d_r} = (1,\,2,\,3) .

Note que para qualquer valor de m, sempre os vetores \vec{d_r} e \vec{d_s} terão direções diferentes. Portanto, as retas r e s podem ser: reversas ou concorrentes.

Se elas forem reversas, então elas não são coplanares.

Mas se elas forem concorrentes, então elas serão complanares. Esse é o caso que nos interessa.

Ora, para que elas sejam concorrentes deve haver um ponto de interseção. Ou seja, deve existir um ponto P = (a, b, c) tal que:

\begin{cases}
b = 2a + 3 \\
c = 3a - 1 \\
\frac{a-1}{2} = \frac{b}{-1} = \frac{c}{m}
\end{cases}

Substituindo b e c na terceira equação, ficamos com:

\frac{a-1}{2} = \frac{2a+3}{-1} = \frac{3a-1}{m}

Considerando a primeira parte dessa equação, temos que:

\frac{a-1}{2} = \frac{2a+3}{-1} \implies a - 1 = -4a -6 \implies a = -1

Considerando agora a última parte dessa equação, já substituindo a = -1, temos que:

\frac{-2 + 3}{-1} = \frac{-3-1}{m} \implies m = 4

Portanto, para m = 4 teremos as retas r e s complanares e concorrentes, sendo que o ponto de interseção será P = (-1, 1, -4).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.