• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analítica : condição de alinhamento de pontos.

Geometria Analítica : condição de alinhamento de pontos.

Mensagempor Larice Mourao » Qui Mai 17, 2012 15:44

(Fuvest)No plano cartesiano, considere o quadrado de vértices A= (0,0) , B = (a,0), C (0,a) e D (a,a), onde a>0. sabendo-se que os triângulos ABE, com E no interior do quadrado, e BDF, com F no exterior do quadrado, são triângulos equiláteros, prove que os pontos C, E e F estão alinhados.

eu sei que para que não exista triangulo o determinante é igual a zero e assim os pontos estão alinhados . Mas como poder haver triangulo (determinante diferente de zero , eu suponho) se os pontos estão alinhados (determinante igual a zero) ?? com essa dúvida nao consigo nem montar o determinante ... Bem , eu não consegui , se alguém puder me orientar fico muito grata ...
Larice Mourao
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mai 17, 2012 15:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Geometria Analítica : condição de alinhamento de pontos.

Mensagempor LuizAquino » Sáb Mai 19, 2012 16:06

Larice Mourao escreveu:(Fuvest)No plano cartesiano, considere o quadrado de vértices A= (0,0) , B = (a,0), C (0,a) e D (a,a), onde a>0. sabendo-se que os triângulos ABE, com E no interior do quadrado, e BDF, com F no exterior do quadrado, são triângulos equiláteros, prove que os pontos C, E e F estão alinhados.


Larice Mourao escreveu:eu sei que para que não exista triangulo o determinante é igual a zero e assim os pontos estão alinhados . Mas como poder haver triangulo (determinante diferente de zero , eu suponho) se os pontos estão alinhados (determinante igual a zero) ?? com essa dúvida nao consigo nem montar o determinante ... Bem , eu não consegui , se alguém puder me orientar fico muito grata ...


Você está confundindo os conceitos. Note que o exercício pede que seja provado que C, E e F estão alinhados. Em outras palavras, CEF não forma um triângulo. Entretanto, não há problema algum em ABE e BDF serem triângulos.

A figura abaixo ilustra o exercício.

figura.png
figura.png (5.4 KiB) Exibido 4249 vezes


Analisando essa figura, como ABE e BDF são triângulos equiláteros, note que:

E = \left(\frac{a}{2},\,\frac{a\sqrt{3}}{2}\right)

F = \left(a + \frac{a\sqrt{3}}{2},\,\frac{a}{2}\right)

Agora tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Geometria Analítica : condição de alinhamento de pontos.

Mensagempor Larice Mourao » Dom Mai 20, 2012 04:08

Luis Aquino , sério , chorei de emoção aqui , muitíssimo obrigada ..
Mas nem sei se acertei , o meu livro não tem a resposta .
O resultado que eu encontrei foi 3a²=0 , acho que errei em alguma parte , eu fiz o determinante com o valor do ponto C abaixo o do E e abaixo com o do F mais uma coluna com 1 , aplicando a regra de Sarrus .. e igualando a zero . :(
mas , mais uma vez , Muito obrigada !! :)
Larice Mourao
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mai 17, 2012 15:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Geometria Analítica : condição de alinhamento de pontos.

Mensagempor Larice Mourao » Dom Mai 20, 2012 04:26

Desculpe-me eu refiz o cálculo e deu certo , realmente o resultado é zero , kkkk, que burra eu . Ficam 5a²-5a²+2a²raiz²(aindanão aprendi em latex)de 3 - 2a² raiz ² de 3. Você esclareceu mesmo , Valeeeeeeu!!
Larice Mourao
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mai 17, 2012 15:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Geometria Analítica : condição de alinhamento de pontos.

Mensagempor LuizAquino » Dom Mai 20, 2012 20:49

Larice Mourao escreveu:Luiz Aquino , sério , chorei de emoção aqui , muitíssimo obrigada ..
Mas nem sei se acertei , o meu livro não tem a resposta .
O resultado que eu encontrei foi 3a²=0 , acho que errei em alguma parte , eu fiz o determinante com o valor do ponto C abaixo o do E e abaixo com o do F mais uma coluna com 1 , aplicando a regra de Sarrus .. e igualando a zero . :(
mas , mais uma vez , Muito obrigada !! :)


Larice Mourao escreveu:Desculpe-me eu refiz o cálculo e deu certo , realmente o resultado é zero , kkkk, que burra eu . Ficam 5a²-5a²+2a²raiz²(aindanão aprendi em latex)de 3 - 2a² raiz ² de 3. Você esclareceu mesmo , Valeeeeeeu!!


O que aparece no resultado do determinante não é essa expressão. Ainda falta o número 4, que aparece dividindo.

Note que você deseja calcular o determinante:

\begin{vmatrix}
0 & a & 1 \\
\frac{a}{2} &  \frac{a\sqrt{3}}{2} & 1 \\
a + \frac{a\sqrt{3}}{2} & \frac{a}{2} & 1
\end{vmatrix}

Veja que eu não igualei esse determinante a zero ainda. Na verdade, primeiro eu tenho que calcular esse determinante. Só no final das contas, se esse determinante for igual a zero, é que poderemos dizer que os pontos estão alinhados.

Aplicando a Regra de Sarrus, temos que:

\begin{array}{|ccc|cc}
0 & a & 1 & 0 & a \\
\frac{a}{2} &  \frac{a\sqrt{3}}{2} & 1 & \frac{a}{2} &  \frac{a\sqrt{3}}{2} \\
a + \frac{a\sqrt{3}}{2} & \frac{a}{2} & 1 & a + \frac{a\sqrt{3}}{2} & \frac{a}{2}
\end{array} =

= \left[0\cdot \frac{a\sqrt{3}}{2} \cdot 1 + a\cdot 1 \cdot \left(a + \frac{a\sqrt{3}}{2}\right) + 1\cdot \frac{a}{2}\cdot \frac{a}{2}\right] - \left[1\cdot \frac{a\sqrt{3}}{2} \cdot \left(a + \frac{a\sqrt{3}}{2}\right)  + 0 \cdot 1 \cdot \frac{a}{2} + a\cdot \frac{a}{2}\cdot 1\right]

= \left(a^2 + \frac{a^2\sqrt{3}}{2} + \frac{a^2}{4}\right) - \left(\frac{a^2\sqrt{3}}{2} + \frac{3a^2}{4} + \frac{a^2}{2}\right)

= \frac{4a^2 + 2a^2\sqrt{3} + a^2}{4} - \frac{2a^2\sqrt{3} + 3a^2 + 2a^2}{4}

= \frac{2a^2\sqrt{3} + 5a^2}{4} - \frac{2a^2\sqrt{3} + 5a^2}{4} = 0

Agora sim podemos dizer que:

\begin{array}{|ccc|}
0 & a & 1 \\
\frac{a}{2} &  \frac{a\sqrt{3}}{2} & 1 \\
a + \frac{a\sqrt{3}}{2} & \frac{a}{2} & 1
\end{array} = 0

Sendo assim, os pontos estão alinhados.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Geometria Analítica : condição de alinhamento de pontos.

Mensagempor Larice Mourao » Ter Mai 22, 2012 23:49

aaa verdade . Eu conferi aqui , percebi que não havia multiplicado o denominador do 3a² , tinha deixado apenas o 2 no denominador , aí qnd fiz o mmc o numerador ficou multiplicado por 2.. realmente se fosse prova aberta tinha errado :ss Obrigada por conferir a resposta !!! viajeeei desde o começo da questão ... rsrs
Larice Mourao
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mai 17, 2012 15:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 38 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D