por Danilo » Qua Mai 02, 2012 02:08
Pessoal, estou em dúvida para resolver um exercício. Lá vai:
Mostre que A (a, -3a), B(a+3, -3a - 1) e C( a + 5, -3a -2) são colineares para todo valor real de a.
Bom, sei que se eles estão alinhados posso usar um determinante com as coordenadas com a condição que o determinante valendo zero. Mas não sei como provar para qualquer valor de a. Quem puder dar uma luz, agradeço!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Russman » Qua Mai 02, 2012 06:19
Isto! Três pontos estão alinhados, isto é, pertencem a uma mesma reta no plano, se o determinante da matriz formada pelas suas coordenadas é nulo. Veja que este determinante se relaciona com a area do triângulo limitado por estes 3 pontos. Assim, se a area é nula não existe triangulo e , portanto, os pontos são alinhados.
Você pode provar que este corpo de pontos é colinear para todo "a" se o determinante não for função de a e nulo.
Por exemplo, suponhamos que o determinante tenha dado 2a-4. Então estes pontos seriam colineares se 2a - 4 = 0 => a = 2. Agora suponha que o determinante tenha dado 5. Então este corpo de pontos não é colinear para nenhum valor de a. Mas e se der 0 o determinante? Então este corpo de pontos é colinear para todo a, pois o determinante não é função de a e nulo!
Mas eu calculei o determiante e está dando -1. Acho que este corpo de pontos não é colinear para todo a.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Pontos alinhados
por Mi_chelle » Qui Mai 12, 2011 02:46
- 2 Respostas
- 1315 Exibições
- Última mensagem por FilipeCaceres

Qui Mai 12, 2011 09:27
Geometria Analítica
-
- [Derivada] ajuda para achar quais pontos a função é diferenc
por leohapo » Seg Nov 21, 2016 17:46
- 1 Respostas
- 7292 Exibições
- Última mensagem por adauto martins

Sáb Dez 10, 2016 11:18
Cálculo: Limites, Derivadas e Integrais
-
- [Integral Indefinida] Um probleminha para provar...
por Lucas Monteiro » Seg Out 22, 2012 22:43
- 1 Respostas
- 960 Exibições
- Última mensagem por MarceloFantini

Ter Out 23, 2012 00:12
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda para resolver equação para calcular velocidade média
por marcorrer » Sex Fev 24, 2012 13:10
- 0 Respostas
- 3493 Exibições
- Última mensagem por marcorrer

Sex Fev 24, 2012 13:10
Sistemas de Equações
-
- [Pontos críticos - Derivadas] Ajuda com pontos críticos
por jonaskessinger » Qui Dez 13, 2012 18:16
- 1 Respostas
- 3197 Exibições
- Última mensagem por Russman

Qui Dez 13, 2012 19:35
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.