• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Dependência e independência linear

[Geometria Analítica] Dependência e independência linear

Mensagempor Aliocha Karamazov » Qua Out 12, 2011 12:43

Pessoal, estou fazendo uns exercícios de dependência e independância linear. Pelo que eu percebi até agora (e tem dado certo), a ideia é escrever os lados que preciso calcular em função de dois lados, multiplicando por um certo coeficiente. Depois, encontro alguma relação entre vetores e chego em algo do tipo:

a(\lambda vezes alguma coisa + algum termo independente) +b(\lambda_{2} vezes alguma coisa + algum termo independente)=0

Onde a e b são os dois lados em função dos quais eu escrevi os outros vetores. Escolhendo a e b linearmente independentes, a única solução possível é quando os coeficientes de a e b são igual a 0. Depois disso, resolvo o sistema e calculo tudo o que eu precisar. No link da apostila abaixo, há algum exemplos.

O problema é que eu não consegui achar uma relação dessa para o exercício abaixo:

Dado um triângulo \triangleABC e I um ponto interior ao triângulo. Passando por
I, traçamos os segmentos PQ, RS, TU paralelos respectivamente a AB, BC e CA respectivamente.
(Com os pontos P, S em AC, T,Q em BC e U, R em AB. Demonstre que:

\frac{||PQ||}{||AB||}+\frac{||RS||}{||BC||}+\frac{||TU||}{||CA||}=2

Se quiser ver a figura, veja na página 32 dessa apostila http://gradmat.ufabc.edu.br/cursos/ga/n ... -Notas.pdf

Alguém pode me ajudar?
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Geometria Analítica] Dependência e independência linear

Mensagempor LuizAquino » Sáb Out 22, 2011 00:09

Aliocha Karamazov escreveu:Dado um triângulo \triangle ABC e I um ponto interior ao triângulo. Passando por
I, traçamos os segmentos PQ, RS, TU paralelos respectivamente a AB, BC e CA respectivamente.
(Com os pontos P, S em AC, T,Q em BC e U, R em AB. Demonstre que:

\frac{||PQ||}{||AB||}+\frac{||RS||}{||BC||}+\frac{||TU||}{||CA||}=2


A figura abaixo ilustra o exercício.

exercício.png
exercício.png (4.33 KiB) Exibido 1127 vezes


Primeiro note que há um erro de digitação no final do enunciado. O texto correto seria algo como: "(...) Q, U em BC e R, T em AB (...)".

Vejamos a agora a resolução do exercício.

Como \vec{AB} e \vec{PQ} são paralelos, temos que \vec{PQ} = k \vec{AB} . Já que esses vetores possuem o mesmo sentido, então sabemos que k > 0. Temos então que:

\vec{PQ} = k \vec{AB} \Rightarrow \left\|\vec{PQ}\right\| = \left\|k \vec{AB}\right\| \Rightarrow \left\|\vec{PQ}\right\| = |k|\left\| \vec{AB}\right\| \Rightarrow \frac{\left\|\vec{PQ}\right\|}{\left\|\vec{AB}\right\|} = k

De modo análogo, existem os números m > 0 e l > 0 tais que:

\frac{\left\|\vec{RS}\right\|}{\left\|\vec{BC}\right\|} = m

\frac{\left\|\vec{UT}\right\|}{\left\|\vec{CA}\right\|} = l

Note que na última relação nós usamos \vec{UT} pois ele tem o mesmo sentido que \vec{CA} e portanto l > 0. Entretanto, como \left\|\vec{UT}\right\| = \left\|\vec{TU}\right\| isso não interfere no que desejamos provar.

Dos conhecimentos de Geometria Plana, já que \vec{AB} e \vec{PQ} são paralelos, sabemos que os triângulos ABC e PQC são semelhantes. Sendo assim, podemos afirmar que:

\frac{\left\|\vec{PQ}\right\|}{\left\|\vec{AB}\right\|} = \frac{\left\|\vec{QC}\right\|}{\left\|\vec{BC}\right\|} = \frac{\left\|\vec{CP}\right\|}{\left\|\vec{CA}\right\|} = k

De modo análogo, podemos justificar que ABC e ARS são semelhantes, assim como ABC e TBU também são. Sendo assim, podemos afirmar que:

\frac{\left\|\vec{AR}\right\|}{\left\|\vec{AB}\right\|} = \frac{\left\|\vec{RS}\right\|}{\left\|\vec{BC}\right\|} = \frac{\left\|\vec{SA}\right\|}{\left\|\vec{CA}\right\|} = m

\frac{\left\|\vec{TB}\right\|}{\left\|\vec{AB}\right\|} = \frac{\left\|\vec{BU}\right\|}{\left\|\vec{BC}\right\|} = \frac{\left\|\vec{UT}\right\|}{\left\|\vec{CA}\right\|} = l

Podemos então escrever que:

\frac{\left\|\vec{PQ}\right\|}{\left\|\vec{AB}\right\|} + \frac{\left\|\vec{AR}\right\|}{\left\|\vec{AB}\right\|} + \frac{\left\|\vec{TB}\right\|}{\left\|\vec{AB}\right\|} = k + m + l

\frac{\left\|\vec{AR}\right\| + \left\|\vec{TB}\right\|}{\left\|\vec{AB}\right\|} = m + l

Mas note que \left\|\vec{AR}\right\| + \left\|\vec{TB}\right\| = \left\|\vec{AB}\right\| + \left\|\vec{TR}\right\| . Dessa forma, temos que:

\frac{\left\|\vec{AB}\right\| + \left\|\vec{TR}\right\|}{\left\|\vec{AB}\right\|} = m + l

1 + \frac{\left\|\vec{TR}\right\|}{\left\|\vec{AB}\right\|} = m + l

Já que ATIP e RBQI são paralelogramos, note que podemos dizer que \left\|\vec{TR}\right\| = \left\|\vec{AB}\right\| - \left\|\vec{PQ}\right\| .

Logo, podemos concluir que:

1 + \frac{\left\|\vec{AB}\right\| - \left\|\vec{PQ}\right\|}{\left\|\vec{AB}\right\|} = m + l

2 = k + m + l
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Geometria Analítica] Dependência e independência linear

Mensagempor Aliocha Karamazov » Qua Out 26, 2011 21:57

Muito obrigado! Ajudou bastante, cara.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?