"A menor distância de um ponto do gráfico de y =
ao ponto (4,0) é :"Bom, fiz os procedimentos padrões, exemplo : achei o coeficiente angular da curva em função de x , e também a equação da reta que liga o ponto (4,0) a um ponto da curva, mas sempre em função de x, até derivei essa equação da reta mas não cheguei a um X que satisfizesse o que procuro.
Alguma sugestão ?!
Valeu !


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)