• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Subespaço vetoriais

Subespaço vetoriais

Mensagempor dambros » Qua Nov 19, 2008 15:18

Boa tarde a todos,

Venho aqui humildemente pedir uma ajuda pois estou ficando sem opções.

Tenho algumas questões de subespaço vetoriais e estou completamente perdido. Já li muitos materiais sobre, mas não consigo entender o conceito do que tornará ou não em um subespaço.

Q1) Verificar se é ou não um Subespaço vetorial.
a) Seja V=R³ e W = {(x,y,z) E R³ | z=x+y+6}

Eu tentei desenvolver o seguinte:

Condição i:

(x1, y1, z1), (x2, y2, z2) E W, então:
(x1, y1, z1) = (x1, y1, x1+y1+6)
(x2, y2, z2) = (x2, y2, x2+y2+6)

Logo:
(x1+x2, y1+y2, x1+x2+y1+y2+12)

(x1+y1+12) =/= Z então não é um subespaço vetorial.

Condição ii:

W = ku
W = (kx1, ky1, kx1+ky1+6k)

(kx1+ky1+6k) = kz

A condição ii apesar de passar não valida como um subespaço por que a condição i falha.

Então eu gostaria de saber se todo esse meu raciocínio está correto.

Obriagado!
dambros
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 19, 2008 14:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}