• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analítica - Dependência Linear

Geometria Analítica - Dependência Linear

Mensagempor -civil- » Sex Abr 22, 2011 13:29

Exiba um exemplo com vetores \overrightarrow{u}, \overrightarrow{v} e \overrightarrow{w} linearmente dependentes e os pares {\overrightarrow{u},\overrightarrow{v}}, {\overrightarrow{u},\overrightarrow{w}}, {\overrightarrow{v},\overrightarrow{w}} todos linearmente independentes.


Já procurei no livro do Paulo Boulos mas não consegui resolver o exercício. Não entendi muito bem o conceito de dependência linear.

Agradeço pela ajuda.
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Geometria Analítica - Dependência Linear

Mensagempor NMiguel » Sex Abr 22, 2011 14:16

Basta escolhermos \overrightarrow{u}= (1,1,1), \overrightarrow{v}=(1,0,1) e \overrightarrow{w}=(0,1,0).

\overrightarrow{u}, \overrightarrow{v} e \overrightarrow{w} são linearmente dependentes porque podemos escrever um deles, neste caso o \overrightarrow{u} como combinação linear dos outros dois (\overrightarrow{u}=\overrightarrow{v}+\overrightarrow{w}).

O mesmo não acontece quando os consideramos dois a dois.
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.