• Anúncio Global
    Respostas
    Exibições
    Última mensagem

circunferência e reta

circunferência e reta

Mensagempor jeffersonricardo » Seg Set 06, 2010 08:46

plote num mesmo sistema de eixos a reta e a circunferência e verifique a posição da reta em relação à circunferência, e se forem concorrentes, calcule os pontos de intersecção .
y=x
x*x+y*y=4

como vou saber se e concorrente?
não conseguir fazer alguem pode me ajudar
jeffersonricardo
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Ago 16, 2010 15:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletronica e de telecunicaçao
Andamento: cursando

Re: circunferência e reta

Mensagempor Douglasm » Seg Set 06, 2010 09:27

A circunferência não seria assim:

x^2 + y^2 = 4 \;\mbox{?}
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: circunferência e reta

Mensagempor jeffersonricardo » Seg Set 06, 2010 10:32

Douglasm
seria sim
desculpe foi a pressa
vc pode me ajudar
estou com duvida neste exercicio
jeffersonricardo
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Ago 16, 2010 15:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletronica e de telecunicaçao
Andamento: cursando

Re: circunferência e reta

Mensagempor Douglasm » Seg Set 06, 2010 11:01

Bom, essa é uma circunferência centrada em (0,0) e com raio 2. A reta tem coeficiente angular 1 e passa pela origem do sistema. É fácil ver que a reta é secante à circunferência (como segue abaixo no esboço). Para determinar quais serão os pontos de intersecção devemos considerar ambas as equações como pertencendo a um sistema:

y = \sqrt{4 - x^2}

y = x \;\therefore

x = \sqrt{4 - x^2} \;\therefore

x^2 = 4 - x^2 \;\therefore

x = \sqrt{2}\;\mbox{ou}\; - \sqrt{2}

y = \sqrt{2}\;\mbox{ou}\; - \sqrt{2}
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: