• Anúncio Global
    Respostas
    Exibições
    Última mensagem

circunferência e reta

circunferência e reta

Mensagempor jeffersonricardo » Seg Set 06, 2010 08:46

plote num mesmo sistema de eixos a reta e a circunferência e verifique a posição da reta em relação à circunferência, e se forem concorrentes, calcule os pontos de intersecção .
y=x
x*x+y*y=4

como vou saber se e concorrente?
não conseguir fazer alguem pode me ajudar
jeffersonricardo
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Ago 16, 2010 15:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletronica e de telecunicaçao
Andamento: cursando

Re: circunferência e reta

Mensagempor Douglasm » Seg Set 06, 2010 09:27

A circunferência não seria assim:

x^2 + y^2 = 4 \;\mbox{?}
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: circunferência e reta

Mensagempor jeffersonricardo » Seg Set 06, 2010 10:32

Douglasm
seria sim
desculpe foi a pressa
vc pode me ajudar
estou com duvida neste exercicio
jeffersonricardo
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Seg Ago 16, 2010 15:53
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletronica e de telecunicaçao
Andamento: cursando

Re: circunferência e reta

Mensagempor Douglasm » Seg Set 06, 2010 11:01

Bom, essa é uma circunferência centrada em (0,0) e com raio 2. A reta tem coeficiente angular 1 e passa pela origem do sistema. É fácil ver que a reta é secante à circunferência (como segue abaixo no esboço). Para determinar quais serão os pontos de intersecção devemos considerar ambas as equações como pertencendo a um sistema:

y = \sqrt{4 - x^2}

y = x \;\therefore

x = \sqrt{4 - x^2} \;\therefore

x^2 = 4 - x^2 \;\therefore

x = \sqrt{2}\;\mbox{ou}\; - \sqrt{2}

y = \sqrt{2}\;\mbox{ou}\; - \sqrt{2}
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}