• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Circunferências

Circunferências

Mensagempor Jonatan » Sex Jul 30, 2010 21:25

Forneça a equação da circunferência simétrica de {x}^{2} + {y}^{2} - 3x - 5y - 7 = 0 em relação ao eixo das ordenadas.

Gabarito: {x}^{2} + {y}^{2} + 3x - 5y - 7 = 0

Como se resolve essa questão?

Eu comecei a resolvê-la descobrindo as coordenadas do centro bem como o raio da circunferência dada, e achei a seguinte equação reduzida de circunferência:

{(x -\frac{3}{2})}^{2} + {(y -\frac{5}{2})}^{2} = 9

Em que as coordenadas do centro são: (\frac{3}{2}, \frac{5}{2})
Em que o raio é: R = 3

Entretanto, a partir de agora, não sei mais como fazer o exercício. Alguém pode resolver para mim e me explicar como se faz esse tipo de questão? Desde já, agradeço.
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Circunferências

Mensagempor MarceloFantini » Sáb Jul 31, 2010 14:40

Qual é o ponto simétrico em relação ao eixo das ordenadas do ponto (3,5)? Se você resolver esse, analogamente resolverá o da circunferência.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.