• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria analítica : Vetor unitário ortogonal

Geometria analítica : Vetor unitário ortogonal

Mensagempor isabellasimao » Sáb Abr 11, 2020 15:37

Oii gente, primeira vez no fórum então me desculpem qualquer coisa, a questão é a seguinte:
Encontre um vetor unitário que seja ortogonal ao plano que passa pelos pontos A(1,1,0), B(1,0,1) e C(0,1,1).
O problema é que eu não sei nem por onde começar, eu sei fazer um vetor ortogonal que passa por esses pontos, mas eu não sei o que seria um "vetor unitário" e o que isso muda na resolução, se alguém puder me ajudar eu ficaria grata.
isabellasimao
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 29, 2020 16:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia
Andamento: cursando

Re: Geometria analítica : Vetor unitário ortogonal

Mensagempor adauto martins » Dom Abr 12, 2020 19:33

vamos tomar os vetores

AB=B-A=(1,0,1)-(1,1,0)=(1-1,0-1,1-0)=(0,-1,1)

AC=C-A=(0,1,1)-(1,1,0)=(0-1,1-1,1-0)=(-1,0,1)

AB e AC,teem que ser linearmente independentes(LI)

para verificar tal condiçao,teriamos que ter

xAB+yAC=0 \Leftrightarrow x=y=0
fica como exercicio...
entao suporemos AB,AC (LI)

o produto vetorial AB X AC é perpendicular(ortogonal) ao plano gerado por AB,AC
logo,vamos tomar

v=AB X AC=
\begin{vmatrix}
   i & j & k \\ 
   0 & -1 & 1 \\
   -1 & 0 & 1 \\
 
\end{vmatrix}
=(-i-j+0)-(k+0+0)=-i-j-k=(-1,-1,-1)


o unitario de v é

{u}_{v}=(v/\left|v \right|)

\left|v \right|=\sqrt[]{(-1)^2+(-1)^2+(-1)^2}=\sqrt[]{3}

{u}_{v}=(-1/\sqrt[]{3},-1/\sqrt[]{3},-1/\sqrt[]{3})

...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Geometria analítica : Vetor unitário ortogonal

Mensagempor isabellasimao » Qua Abr 15, 2020 15:14

adauto martins escreveu:vamos tomar os vetores

AB=B-A=(1,0,1)-(1,1,0)=(1-1,0-1,1-0)=(0,-1,1)

AC=C-A=(0,1,1)-(1,1,0)=(0-1,1-1,1-0)=(-1,0,1)

AB e AC,teem que ser linearmente independentes(LI)

para verificar tal condiçao,teriamos que ter

xAB+yAC=0 \Leftrightarrow x=y=0
fica como exercicio...
entao suporemos AB,AC (LI)

o produto vetorial AB X AC é perpendicular(ortogonal) ao plano gerado por AB,AC
logo,vamos tomar

v=AB X AC=
\begin{vmatrix}
   i & j & k \\ 
   0 & -1 & 1 \\
   -1 & 0 & 1 \\
 
\end{vmatrix}
=(-i-j+0)-(k+0+0)=-i-j-k=(-1,-1,-1)


o unitario de v é

{u}_{v}=(v/\left|v \right|)

\left|v \right|=\sqrt[]{(-1)^2+(-1)^2+(-1)^2}=\sqrt[]{3}

{u}_{v}=(-1/\sqrt[]{3},-1/\sqrt[]{3},-1/\sqrt[]{3})

...


Obrigada, sua explicação foi muito esclarecedora!!
isabellasimao
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 29, 2020 16:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron