-
-
Novo APOIA.se AjudaMatemática
por admin em Sáb Abr 25, 2020 19:01
- 0 Tópicos
- 457998 Mensagens
-
Última mensagem por admin
em Sáb Abr 25, 2020 19:01
-
-
Agradecimento aos Colaboradores
por admin em Qui Nov 15, 2018 00:25
- 0 Tópicos
- 517370 Mensagens
-
Última mensagem por admin
em Qui Nov 15, 2018 00:25
-
-
Ativação de Novos Registros
por admin em Qua Nov 14, 2018 11:58
- 0 Tópicos
- 481307 Mensagens
-
Última mensagem por admin
em Qua Nov 14, 2018 11:58
-
-
Regras do Fórum - Leia antes de postar!
por admin em Ter Mar 20, 2012 21:51
- 0 Tópicos
- 682718 Mensagens
-
Última mensagem por admin
em Ter Mar 20, 2012 21:51
-
-
DICA: Escrevendo Fórmulas com LaTeX via BBCode
por admin em Qua Ago 29, 2007 04:04
- 41 Tópicos
- 2037102 Mensagens
-
Última mensagem por Janayna
em Qui Abr 27, 2017 00:04
por aninhapmello25 » Seg Abr 16, 2018 11:57
Alguém pode me ajudar a resolver esses dois exercícios de geometria do ponto?
- Anexos
-

-
aninhapmello25
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 16, 2018 11:38
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Gebe » Seg Abr 16, 2018 19:48
Primeiramente devo dizer que na primeira questão falta informação. Note que não é dito qual é o eixo de giro, ou seja, não é falado se devemos girar o segmento mantendo A fixo, ou B fixo, ou qualquer outro ponto. Vou supor que seja o ponto A.
- Quando giramos um segmneto de reta 90° horario ou anti-horario (geometrico no exercicio), estaremos produzindo um segundo segmento que é dito perpendicular ao primeiro (está a 90° do primeiro).
- Vamos começar calculando o coeficiente angular do primeiro segmento

:

Calculamos este coeficiente, pois o coeficiente angular do segmento perpendicular deverá ser igual ao oposto inverso de

, ou seja,

deverá ser igual a:

Obs.: Deixe em fração
Assim m2 deverá ser o coeficiente angular do segmento entre o ponto A e um C (ou D) que ainda não sabemos.
O coeficiente m2 pode ser calculado como feito anteriormente:

Agora o que podemos fazer é igualar os numeradores e igualar os denominadores para achar possiveis yc e xc.
- No entanto, note que temos um sinal (negativo) neste coeficiente, este sinal pode ser gerado de duas formas, numerador negativo e denominador positivo ou numerador positivo e denominador negativo.
- Estas duas possibilidades, exploradas logo abaixo, darão 2 yc's e 2 xc's diferentes, uma será para o giro horario e a outra para o giro anti-horario.

Resolvendo a primeira possibilidade temos:

Resolvendo a primeira possibilidade temos:

Espero ter ajudado, qualquer duvida deixe msg. Assim que puder tento resolver a outra questão (caso não tenham ainda).
Obs.: No desenho vermelho é o seg original, azul giro horario e verde anti-horario
- Anexos
-

- sda.png (6.58 KiB) Exibido 5012 vezes
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Estudo do ponto - Geometria Analítica!
por Iza » Qua Set 10, 2008 18:16
- 3 Respostas
- 4264 Exibições
- Última mensagem por admin

Qui Set 11, 2008 15:48
Geometria Analítica
-
- geometria analitica ponto equidistante
por jeffersonricardo » Seg Ago 16, 2010 17:18
- 1 Respostas
- 2368 Exibições
- Última mensagem por MarceloFantini

Seg Set 06, 2010 13:10
Geometria Plana
-
- geometria analitica ponto equidistante
por jeffersonricardo » Seg Ago 16, 2010 17:18
- 1 Respostas
- 13627 Exibições
- Última mensagem por Douglasm

Seg Ago 16, 2010 17:44
Geometria Plana
-
- geometria analitica ponto equidistante
por jeffersonricardo » Ter Ago 17, 2010 15:04
- 1 Respostas
- 7870 Exibições
- Última mensagem por Douglasm

Ter Ago 17, 2010 15:33
Geometria Analítica
-
- Geometria no espaço- coordenadas de ponto
por emsbp » Sáb Abr 06, 2013 16:34
- 3 Respostas
- 1809 Exibições
- Última mensagem por emsbp

Dom Abr 07, 2013 16:37
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.