• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de um simulado Enem

Questão de um simulado Enem

Mensagempor JuFairy » Ter Mar 13, 2018 22:31

Um arame possui (2+pi) m de comprimento.
Ele sera divido em duas partes: com a primeira será construído um quadrado e com a segunda uma circunferência.
A divisão do arame deverá ser feita de tal forma que o perímetro do quadrado seja 1m.
Nessas condições, o raio da circunferência sera de..

Não intendo como usar 'pi' no comprimento para medir a circunferência.

Desde já obrigada!
JuFairy
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mar 13, 2018 22:24
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Questão de um simulado Enem

Mensagempor Gebe » Ter Mar 13, 2018 22:56

Perimetro do quadrado é igual a 4 vezes o tamanho do lado, logo sabemos que dos (2+pi) m utilizaremos 1m para confecção do quadrado.

Com isso ainda nos restam de arame: (2+pi) m -1m = (1+pi) m

Agora para confecção da circunferencia utilizamos a formula da para o calculo de sua circunferencia (ou perimetro da circunferencia):
Circunferencia = 2*pi*raio

Como temos (1+pi) m de arame, podemos fazer:

2*pi*raio = 1+pi
raio = (1+pi)/2pi
Podemos ainda reescrever como: raio = 1/2 + 1/2pi
Podemos ainda fazer uma aproximação com pi=3.14 --> raio = 0.5 + 0.159 = 0.659 m

Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?


cron