• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Cálculo de um ponto

[Geometria Analítica] Cálculo de um ponto

Mensagempor GamerVSL » Ter Fev 27, 2018 13:16

Bom dia,

estou com dificuldade em montar um fórmula. Eu possuo 2 pontos (x0, y0) e (x1, y1) e um ângulo (xº), a partir dessas informações preciso calcular um terceiro ponto que esteja a x graus dos 2 anteriores. É possível fazer isso? Agradeço a atenção.
GamerVSL
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Fev 27, 2018 13:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de sistemas
Andamento: formado

Re: [Geometria Analítica] Cálculo de um ponto

Mensagempor DarioCViveiros » Qui Mar 01, 2018 23:10

Boa noite, espero que veja essa mensagem apesar da espera.
Se existem dois pontos \left({x}_{0},{y}_{0} \right) e \left({x}_{1},{y}_{1} \right)

e esses formarem uma reta, é possível calcular o coeficiente angular m=tan(x)

através de um determinante, basta fazer:

\begin{vmatrix}
   {x}_{0} & {y}_{0} & 1  \\ 
   {x}_{1} & {y}_{1} & 1\\
   x & y & 1
\end{vmatrix}

ao calcular o determinante com tais valores, conseguirá a equação da reta geral, ou seja, na forma ax + by = c
Em seguida, isola-se o y:

by=c-ax

y=-\frac{a}{b}x+\frac{c}{b}

m=-\frac{a}{b}

n=\frac{c}{b}

y=mx+n

m é chamado de coeficiente angular e, equivale à tangente do ângulo entre a reta e o eixo das abscissas (x). Enquanto que n o coeficiente angular e corresponde à "altura" do ponto em que a reta cruza o eixo das ordenadas (y).
Logo, basta verificar a qual ângulo equivale a tangente encontrada, o que pode ser feito através de uma tabela ou da função inversa

{tan}^{-1}x=\frac{1}{tan(x)}

a qual retornará um valor em radiano, logo, nesse caso, é necessário fazer a conversão para graus, caso seja necessário, caso contrário, verificar em uma tabela deve servir.

Espero ter ajudado.
DarioCViveiros
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 21, 2018 16:33
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: