• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo de incognita]

[calculo de incognita]

Mensagempor GES » Seg Mai 04, 2015 02:26

Boa noite. Peço por gentileza que me deem uma luz nesta questão.

QUESTÃO: os vetores u= (2,1,-1) e v=(1,-1,m+1) formam um ângulo de 45º entre si. Calcule o valor de m.

usei a formula de angulos entre vetores: cosseno de teta igual a u escalar v sobre o produto dos modulos de u e v;

cheguei na equação quadrática: 8m² + 40m + 68 = 0 ; Isso me deu um delta igual a -576. A matemática diz que não existe raiz quadrada real para número negativo. Desejo se possível, que alguém me informe se cometi algum erro ou se meus números estão certos. obrigado.
GES
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 05, 2015 22:35
Formação Escolar: GRADUAÇÃO
Área/Curso: ciência e tecnologia
Andamento: cursando

Re: [calculo de incognita]

Mensagempor DanielFerreira » Sex Mai 08, 2015 00:06

Olá GES, boa noite!

Fiz da seguinte forma:

\\ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} \\\\\\ \cos 45^o = \frac{(2, 1, - 1) \cdot (1, - 1, m + 1)}{\sqrt{2^2 + 1^2 + (- 1)^2} \cdot \sqrt{1^2 + (- 1)^2 + (m + 1)^2}} \\\\\\ \frac{\sqrt{2}}{2} = \frac{2 - 1 - m - 1}{\sqrt{6} \cdot \sqrt{m^2 + 2m + 3}} \\\\\\ \frac{\sqrt{2}}{2} = \frac{- m}{\sqrt{6(m^2 + 2m + 3)}}

\\ \left (\frac{\sqrt{2}}{2} \right )^2 = \left (\frac{- m}{\sqrt{6(m^2 + 2m + 3)}} \right )^2 \\\\\\ \frac{2}{4} = \frac{m^2}{6(m^2 + 2m + 3)} \\\\\\ \frac{1}{1} = \frac{m^2}{3(m^2 + 2m + 3)} \\\\ 3m^2 + 6m + 9 = m^2 \\ 2m^2 + 6m + 9 = 0\\

De fato \Delta < 0; digitaste correctamente os vetores?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [calculo de incognita]

Mensagempor GES » Sex Mai 08, 2015 00:41

amigo, muito obrigado pela ajuda. Os vetores estão corretos. Essa questão foi feita para dar uma raiz negativa, mesmo. mais uma vez obrigado.
GES
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 05, 2015 22:35
Formação Escolar: GRADUAÇÃO
Área/Curso: ciência e tecnologia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?