por Larissa28 » Dom Abr 05, 2015 10:03
Calcule os ângulos entre os planos diagonais (planos determinados pelas arestas opostas) do paralelogramo em que quatro vértices consecutivos são O(0,0,0), A(1,0,0), B(1,1,0) e C(0,1,1).
-
Larissa28
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Sáb Mar 21, 2015 17:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Produção
- Andamento: cursando
por adauto martins » Seg Abr 06, 2015 12:34
vamos tomar os planos diagonais do paralelogramo...
seja o plano determinado pelos pontos,OB, cujo vetor normal eh:

![seja o plano determ.por AC, cujo vetor normal eh:
[tex]w=OBX(OC-OA)=i-j+2k=(1,-1,2) seja o plano determ.por AC, cujo vetor normal eh:
[tex]w=OBX(OC-OA)=i-j+2k=(1,-1,2)](/latexrender/pictures/a1d2c926a7ceed7103f4e906b61c2b62.png)
...entao:
![v.w=\left|v \right|\left|w \right|cos(v,w)\Rightarrow cos(v,w)=v.w/(\left|v \right|.\left|w \right|)=(1,-1,0)(1,-1,2)/(2\sqrt[]{2})=1+1+0/2\sqrt[]{2}=1/\sqrt[]{2}=\sqrt[]{2}/2\Rightarrow (v,w)=arcos(\sqrt[]{2}/2)=\pi/4\Rightarrow (v,w)=45° v.w=\left|v \right|\left|w \right|cos(v,w)\Rightarrow cos(v,w)=v.w/(\left|v \right|.\left|w \right|)=(1,-1,0)(1,-1,2)/(2\sqrt[]{2})=1+1+0/2\sqrt[]{2}=1/\sqrt[]{2}=\sqrt[]{2}/2\Rightarrow (v,w)=arcos(\sqrt[]{2}/2)=\pi/4\Rightarrow (v,w)=45°](/latexrender/pictures/cdb2dc20405deb088f6caa6a079e8315.png)
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qui Abr 09, 2015 16:32
oiii garota,essa minha soluçao nao esta correta,pois AC nao eh diagonal do paralelogramo solido...vou procurar resolve-lo e posto aqui,tbao...me desculpe...apareçaaaa...bons estudos
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Sex Abr 10, 2015 11:29
pelos dados do problema,temos q.
os ptos 0,A,B,C sao vertices de um pararalepido,mas o pto O,nao pertence a fase definida pelos ptos A,B,C...
pelo proprio enunciado podemops ter:D(0,0,1)eixo-z,E(0,1,0)eixo-y do pararalelpipedo,e esses ptos com os ptos dados sao suficientes p/resoluçao...
no primeiro octante temos:
ABCD definem uma face,OABE definem a fase no plano xy,logo...
os vetores OB,OC definem um plano diagonal,e AE,AC definem a outro plano diagonal...
logo,

sao os vetores normais a esses planos diagonais...entao...


=

,entao...

![cos(v,w)=1.1+(-1).(-1)+1.0/(\sqrt[]{3}.\sqrt[]{2})= cos(v,w)=1.1+(-1).(-1)+1.0/(\sqrt[]{3}.\sqrt[]{2})=](/latexrender/pictures/68a2bc55b7507d5a3f69352809cd0c13.png)
![\Rightarrow (v,w)=arcos(2/\sqrt[]{6}) \Rightarrow (v,w)=arcos(2/\sqrt[]{6})](/latexrender/pictures/52795b8c43a3c54360ce1e469d5a9834.png)

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Angulos entre planos e retas] Piramide Regular
por LucasSG » Seg Jul 08, 2013 11:36
- 1 Respostas
- 1271 Exibições
- Última mensagem por young_jedi

Seg Jul 08, 2013 20:37
Geometria Analítica
-
- PLANOS - PARALELISMO ENTRE PLANOS
por ubelima » Ter Jun 19, 2012 19:22
- 2 Respostas
- 5823 Exibições
- Última mensagem por ubelima

Qua Jun 20, 2012 01:01
Geometria Analítica
-
- Perpendicularidade entre planos
por Danilo » Seg Out 22, 2012 00:20
- 7 Respostas
- 3538 Exibições
- Última mensagem por MarceloFantini

Seg Out 29, 2012 18:03
Geometria Analítica
-
- [Interseção entre planos]
por sulafuly » Dom Mar 02, 2014 01:14
- 0 Respostas
- 2008 Exibições
- Última mensagem por sulafuly

Dom Mar 02, 2014 01:14
Geometria Analítica
-
- Interseção entre planos
por marinasaboia » Sex Jan 08, 2016 14:44
- 1 Respostas
- 3223 Exibições
- Última mensagem por RuuKaasu

Sex Jan 15, 2016 21:52
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.