• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[GA] Dependência e Independência Linear

[GA] Dependência e Independência Linear

Mensagempor Larissa28 » Ter Mar 31, 2015 20:43

Considere a equação:

{x}_{1}a+{y}_{1}b+{z}_{1}c = {x}_{2}a+{y}_{2}b+{z}_{2}c
( onde a, b e c são vetores )

a) Mostre que a,b e c são vetores linearmente independentes, então
{x}_{1}={x}_{1}, {y}_{2}={y}_{2}, {z}_{1}={z}_{2}

b) Mostre que a, b e c são linearmente dependentes, então NÃO podemos concluir que
{x}_{1}={x}_{1}, {y}_{2}={y}_{2}, {z}_{1}={z}_{2}
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [GA] Dependência e Independência Linear

Mensagempor adauto martins » Qua Abr 01, 2015 13:13

a)
por hipotese temos q. a,b,c sao LI\Rightarrow (x1-x2)a+(y1-y2)b+(z1-z2)c=0\Rightarrow (x1-x2)=0,(y1-y2)=0,(z1-z2)=0
b)por hipotese temos q. a,b,c sao LD... entao podemos ter um dos vetores como combinaçao linear dos outros dois...por exemplo
a=((y1-y2)/(x1-x2))b+((y1-y2)/(x1-x2))c\Rightarrow x1-x2\neq 0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 795
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}