• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Essa elipse e essa parábola se encontram?

Essa elipse e essa parábola se encontram?

Mensagempor Gregorio Diniz » Qua Mar 12, 2014 17:00

Senhores, resolvi esta questão desenhando os gráficos.

Entretanto, me veio um dúvida: como resolver usando apenas álgebra. Não consegui.

Alguém poderia ajudar?

A questão é simplesmente determinar os pontos de encontro da elipse x^2/9+y^2/25=1 e da parábola 2y^2=2x-7.

A respostas é que a elipse e a parábola não se encontram, o que é bem fácil visualizando-se os gráficos.

Grato.

Gregório
Gregorio Diniz
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mar 08, 2014 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Essa elipse e essa parábola se encontram?

Mensagempor Russman » Qua Mar 12, 2014 18:18

Suponha que as curvas se encontrem em um ponto genérico (x,y). Se isto é verdade, então este ponto pertence as duas curvas simultaneamente! Assim, monta-se um sistema de equações

\left\{\begin{matrix}
\frac{x^2}{9} + \frac{y^2}{25}=1\\ 
2y^2 = 2x-7
\end{matrix}\right.

pois o ponto (x,y) deve satisfazer ambas equações.

Esse sistema não-linear pode ser resolvido com substituição. Multiplique a 1° equação por 2 e substitua o 2y^2 da equação de baixo.

\frac{2x^2}{9} + \frac{2y^2}{25}=2
50x^2 + 9.2y^2 = 450 ---> Só pra eliminar as frações
50x^2 + 9.(2x-7) = 450 ---> efetuamos a substituição
50x^2 + 18x - 513=0

Obtivemos uma equação de 2° grau para a ordenada x do ponto. Esta equação possui duas raízes reais! Isto é, ainda existe a possibilidade de encontro entre as curvas. Porém, se você calcular estas raízes verá que elas encontram-se em um intervalo(aproximado) [-3,4;3,03] o que não gera raízes reais para y!

Da segunda equação, como para todo y é necessário que 2y^2>0, temos

2x-7>0 \Rightarrow x>3,5.

Assim, as raízes da equação obtida para x não estão dentro do intervalo necessário para a existência de y real!

Portanto tal ponto de encontro não existe.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Essa elipse e essa parábola se encontram?

Mensagempor Gregorio Diniz » Qua Mar 12, 2014 18:32

Perfeito!
Muito boa a explicação.
Obrigado.
Gregório
Gregorio Diniz
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mar 08, 2014 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?