• Anúncio Global
    Respostas
    Exibições
    Última mensagem

G.A - Ponto

G.A - Ponto

Mensagempor juxcarvalho » Dom Ago 18, 2013 10:09

1- Se M(2, 1), N(3, 3) e P(6, 2) são os pontos médios dos lados AB, BC e CA, respectivamente, de um triangulo ABC, determinar as coordenadas de A, B, e C.

2- O baricentro de um triângulo ABC é G(-4/3,4/3), o ponto médio do lado BC é N(-5/2,-1) e ponto médio do lado AB é M(0,1/2). Determine as coordenadas do vértice A, B e C.

Ooobg :)
juxcarvalho
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 30, 2013 11:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: G.A - Ponto

Mensagempor nakagumahissao » Qui Out 08, 2015 15:52

\frac{{x}_{1} + {x}_{2}}{2} = 2 \Rightarrow {x}_{1} + {x}_{2} = 4\;\;\;\;\;[1]

\frac{{x}_{2} + {x}_{3}}{2} = 3 \Rightarrow {x}_{2} + {x}_{3} = 6\;\;\;\;\;[2]

\frac{{x}_{1} + {x}_{3}}{2} = 6 \Rightarrow {x}_{1} + {x}_{3} = 12\;\;\;\;\;[3]

Destas equações obtemos:

De [1]:

{x}_{1} + {x}_{2} = 4 \Leftrightarrow {x}_{1} = 4 - {x}_{2} \;\;\;\;[4]

usando [4] em [3]:

{x}_{1} + {x}_{3} = 12 \Leftrightarrow 4 - {x}_{2} + {x}_{3} = 12 \Leftrightarrow {x}_{3} = 8 + {x}_{2} \;\;\;\;[5]

Usando agora [5] em [2]:

{x}_{2} + {x}_{3} = 6 \Rightarrow  {x}_{2} + 8 + {x}_{2} = 6 \Rightarrow 2{x}_{2} = -2 \Rightarrow {x}_{2} = -1 \;\; [6]

Usando o resultado [6] em [5]:

{x}_{3} = 7 \;\;\;\;\;[7]

Usando [7] em [4] obtem-se:

{x}_{1} = 5 \;\;\;\;\;[8]

Resumindo:

{x}_{1} = 5,\;\;\;\;{x}_{2} = -1, \;\;\;\;{x}_{3} = 7


Por um outro lado,

\frac{{y}_{1} + {y}_{2}}{2} = 1 \Rightarrow {y}_{1} + {y}_{2} = 2 \Rightarrow {y}_{1} = 2 -  {y}_{2} \;\;\;\;\;[9]

\frac{{y}_{2} + {y}_{3}}{2} = 3 \Rightarrow {y}_{2} + {y}_{3} = 6\;\;\;\;\;[10]

\frac{{y}_{1} + {y}_{3}}{2} = 2 \Rightarrow {y}_{1} + {y}_{3} = 4\;\;\;\;\;[11]

Usando [9] em [11]:

{y}_{1} + {y}_{3} = 4 \Rightarrow 2 - {y}_{2} + {y}_{3} = 4 \Rightarrow  {y}_{3} = 2 + {y}_{2}\;\;\;\;[12]

Usando este resultado [12] em [10], obtém-se:

{y}_{2} + {y}_{3} = 6 \Rightarrow  {y}_{2} + 2 + {y}_{2} = 6 \Rightarrow {y}_{2} = 2\;\;\;\;[13]

Usando [13] em [12], obtém-se:

{y}_{3}= 4\;\;\;\;[14]

finalmente, utilizando [14] em [9], obtém-se:

{y}_{1}= 0\;\;\;\;[15]

temos até agora:

{x}_{1} = 5,\;\;\;\;{x}_{2} = -1, \;\;\;\;{x}_{3} = 7

{y}_{1} = 0,\;\;\;\;{y}_{2} = 2, \;\;\;\;{y}_{3} = 4

e os seguintes pontos:

A(5,0),\;\;B(-1, 2),\;\;C(7,4)
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}