por deividchou » Qua Ago 07, 2013 13:55
Bom galera gostaria de saber o que devo fazer neste caso..
Se A é o ponto médio do segmento BD,determine as coordenadas do ponto D.
A(7,3) B(-1,5) D(?;?)
eu tentei ,mas n consegui encontrar as coordenadas do D
Pma = xb+xd/2 yb=yd/2
qual dicas vcs me recomendam ?
-
deividchou
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qua Ago 07, 2013 13:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Qua Ago 07, 2013 15:54
Se o ponto

é o ponto médio do segmento

, então a distância de

até

é a mesma que de

até

.
Assim, é possível mostrar que


de modo que


donde


e então

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por deividchou » Qua Ago 07, 2013 19:04
Obrigado Russman ,ajudou-me a esclarecer o problema.. eu estava fazendo o certo achando que estava errado, aí nunca descobriria o resultado .
-
deividchou
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qua Ago 07, 2013 13:52
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Tripla Coordenada - Dúvida em resolução de tripla coordenada
por talesalberto » Sáb Nov 01, 2014 16:24
- 1 Respostas
- 1453 Exibições
- Última mensagem por adauto martins

Dom Nov 02, 2014 11:23
Álgebra Linear
-
- [Cálculo de Baricentro] com um vértice e um ponto médio
por Matheus Lacombe O » Dom Mai 27, 2012 18:49
- 1 Respostas
- 1824 Exibições
- Última mensagem por DanielFerreira

Dom Mai 27, 2012 21:24
Geometria Analítica
-
- Área - Sejam ABCD um quadrado de lado 12 cm, E o ponto médio
por marguiene » Sex Out 10, 2014 10:40
- 0 Respostas
- 1500 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:40
Geometria Plana
-
- Duvida teorema do valor médio
por markitodq » Dom Abr 21, 2013 09:47
- 0 Respostas
- 1084 Exibições
- Última mensagem por markitodq

Dom Abr 21, 2013 09:47
Cálculo: Limites, Derivadas e Integrais
-
- Duvida Exercicio 2ª Ensino Medio Trigonometria
por faber123 » Seg Mar 10, 2014 20:46
- 0 Respostas
- 1609 Exibições
- Última mensagem por faber123

Seg Mar 10, 2014 20:46
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.