por luankaique » Ter Ago 06, 2013 18:08
A equação é:

Fiz aqui e achei:
x = t
y = 5t + h - 1
z = h
Porém a resposta da lista é:
x = t
y = 5t - 1
z = h
Não consigo sair disso :/
-
luankaique
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Jul 25, 2013 22:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Industrial Mecânica
- Andamento: cursando
por Russman » Qua Ago 07, 2013 09:35
Note que este plano corta o eixo z de forma ortogonal. Assim, ele pode ser descrito por qualquer coordenada constante de z. Essa quantidade h é uma constante. Se você fizer x=t, então 5t-y-1=0 de modo que y = 5t-1 e a coordenada z está livre para qualquer valor constante: z=h, onde h pertence ao Reais.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- AJUDA EQUAÇÃO VETORIAL/PARAMÉTRICA NO PLANO
por Raquel Botura » Sex Nov 09, 2018 11:19
- 1 Respostas
- 8246 Exibições
- Última mensagem por Gebe

Sex Nov 09, 2018 17:13
Geometria Analítica
-
- [PLANO] Equação Geral
por manuel_pato1 » Sex Set 21, 2012 19:54
- 3 Respostas
- 2824 Exibições
- Última mensagem por manuel_pato1

Sáb Set 22, 2012 11:50
Geometria Analítica
-
- Equação geral do plano
por lucash96 » Seg Nov 02, 2015 16:51
- 0 Respostas
- 1215 Exibições
- Última mensagem por lucash96

Seg Nov 02, 2015 16:51
Geometria Analítica
-
- Encontrar a Equação Geral do Plano
por Vitor2+ » Seg Nov 14, 2011 02:21
- 7 Respostas
- 10352 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:04
Geometria Analítica
-
- Vértices do tetraedro e equação geral do plano
por -civil- » Qua Jun 15, 2011 23:04
- 1 Respostas
- 3911 Exibições
- Última mensagem por LuizAquino

Qui Jun 16, 2011 17:57
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.