• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Dependência Linear.

[Geometria Analítica] Dependência Linear.

Mensagempor Pessoa Estranha » Sex Ago 02, 2013 16:14

Olá. Não estou conseguindo entender um exercício sobre vetores. O exercício diz o seguinte: "Prove que, se o vetor u é um múltiplo escalar do vetor v (u=k.v), então qualquer sequência que contém os vetores u e v é linearmente dependente (LD)". Bom, o meu raciocínio ficou assim: temos, por hipótese, que o vetor u é um múltiplo escalar do vetor v e, portanto, são paralelos e, logo, a sequência de vetores (u,v) é linearmente dependente (LD). Agora, temos que pensar no caso de uma sequência de três vetores e no caso com quatro ou mais vetores. Neste último, com quatro ou mais, por definição, sabemos que tal sequência é sempre linearmente dependente. Agora, o que eu não consigo entender é o caso de três vetores numa sequência. Teríamos que pensar numa sequência com, é claro, os vetores u e v, e acrescentar mais um, por exemplo, um vetor w. Assim, seria uma sequência (u, v, w) para provar que é LD. Porém, pelo que estudei, entendo que uma sequência com três vetores é LD quando todos os vetores em questão são paralelos à um mesmo plano; e são LI (linearmente independente) quando ocorre o contrário, se, por exemplo, o vetor w é não é paralelo ao mesmo plano que os outros dois vetores são. Sei também que existe uma proposição tal que diz que a sequência de vetores (u, v, w) é LD se, e somente se, um dos vetores é gerado pelos outros dois, no caso, w gerado por u e v. Eu acho que o certo é usar esta proposição para provar que a sequência é LD. Procurei saber como usar tal proposição e me disseram que devo usar o coeficiente igual a zero multiplicando o vetor w, mas eu não consigo entender como podemos simplesmente acrescentar o zero assim! (Parece uma questão boba, mas não entendo).

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Dependência Linear.

Mensagempor e8group » Sex Ago 02, 2013 21:35

Exercício interessante vamos ver o que sai ...

Considere u_1 , \hdots , u_n vetores sobre um espaço vetorial E onde por simplicidade trocamos u por u_1 e v por u_2 vamos mostra que se (u_1,u_2 ) L.D. então a sequência ou n-upla (u_1, \hdots , u_n ) L.D. . Suponhamos inicialmente que tenhamos uma combinação linear nula ,

(*) \sum_{k=1}^{n} \alpha_k u = O_E (em queO_E é o vetor nulo do espaço vetorial E ) .

Ora , sendo (u_1,u_2 ) L.D , reescrevendo u_1 = ku_2(k\in \mathbb{R} ) temos :

\sum_{k=1}^{n} \alpha_k u_k = O_E sse (\alpha_1k + \alpha_2 )u_2 + \sum_{k=3}^{n} \alpha_k u_k = O_E . Se os vetores u_i \hspace{15mm} (i=2,\hdots,n ) são L.D. obteremos escalares não todos nulos satisfazendo (*) chegando a conclusão que (u_1, \hdots , u_n ) L.D ,caso eles são L.I. resulta ,


(\alpha_1k + \alpha_2 )u_2 + \sum_{k=3}^{n} \alpha_k u_k = O_E sse


\alpha_1k + \alpha_2  = \alpha_3 = \hdots = \alpha_n =  0 .

A combinação linear nula (*) se resume em


\alpha_1u_1 + \alpha_2 u_2 = O_E , desde que por hipótese (u_1,u_2) L.D. esta combinação linear nula admite solução além da trivial . Assim obtemos escalares \alpha_1, \hdots , \alpha_n não todos nulos tais que ,

\sum_{k=1}^{n} \alpha_k u = O_E e portanto (u_1, \hdots , u_n ) L.D. .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Geometria Analítica] Dependência Linear.

Mensagempor Pessoa Estranha » Sex Ago 02, 2013 21:58

Olá. Muito obrigada pela resposta, mas gostaria de saber se há outra maneira de resolver, pois ainda não aprendi somatória (estou no primeiro ano). Mesmo assim, muito obrigada; a sua resposta parece muito boa. Valeu!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Geometria Analítica] Dependência Linear.

Mensagempor e8group » Sex Ago 02, 2013 22:08

Também estou no primeiro ano e sei quase nada de matemática .Apenas compactei uma soma . Observe :

\sum_{k=1}^{n} \alpha_k u_1  = \alpha_1u_1 + \alpha_2u_2 + \hdots + \alpha_nu_n .

Se este exercício trata-se de um exercício de geometria analítica ,pode considerar por exemplo E = \mathbb{R} ^2 ou E = \mathbb{R} ^3 ou generalizar E = \mathbb{R} ^n . Mas em geral para espaços abstratos vale a solução (acredito ) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Geometria Analítica] Dependência Linear.

Mensagempor Pessoa Estranha » Sáb Ago 03, 2013 11:17

Está certo. Valeu! Acho que agora vou conseguir resolver.
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D