por Marcos_Mecatronica » Seg Jul 08, 2013 01:38
Poderiam me ajudar? Encontre a equacãao em coordenadas cilndricas da superfcie dada por x^2 + y^2 = z^2: Esboce a
superfcie.
-
Marcos_Mecatronica
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Mar 19, 2013 20:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por young_jedi » Seg Jul 08, 2013 22:17
em coordenadas cilíndricas temos que

então

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Coordenadas retangulares para cilindricas
por ah001334 » Dom Nov 27, 2011 16:44
- 0 Respostas
- 1369 Exibições
- Última mensagem por ah001334

Dom Nov 27, 2011 16:44
Geometria Analítica
-
- [Coordenadas Cilíndricas] Integral Tripla
por raimundoocjr » Sáb Dez 14, 2013 11:07
- 1 Respostas
- 3133 Exibições
- Última mensagem por Russman

Dom Dez 15, 2013 02:55
Cálculo: Limites, Derivadas e Integrais
-
- Esboço da região de integração - coordenadas cilíndricas
por BrunoCPL » Dom Set 09, 2018 17:48
- 1 Respostas
- 5948 Exibições
- Última mensagem por Gebe

Seg Set 10, 2018 11:00
Cálculo: Limites, Derivadas e Integrais
-
- Integral tripla em coordenadas cilíndricas e esféricas
por karllatorelli » Ter Jul 15, 2014 15:19
- 0 Respostas
- 1062 Exibições
- Última mensagem por karllatorelli

Ter Jul 15, 2014 15:19
Cálculo: Limites, Derivadas e Integrais
-
- [Sistema de coordenadas] Coordenadas do paralelepipedo
por rochadapesada » Dom Dez 15, 2013 15:05
- 0 Respostas
- 1341 Exibições
- Última mensagem por rochadapesada

Dom Dez 15, 2013 15:05
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.