por amigao » Sáb Jun 29, 2013 11:23
Seja r X=(1,0,a) +

(a,a,0) e S:

Determine a para que (a) r seja tangente (b) secante (c) exterior a S.
Eu tentei fazer porém aparece o lambda no meio me atrapalhando e não consigo tirá-lo e nem continuar. Como faço?
grato.
-
amigao
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Mai 11, 2013 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por young_jedi » Dom Jun 30, 2013 18:04
reescrevendo a equação da esfera temos

com isso temos o raio e o centro da esfera
agora si a reta é tangente a esfera então a distancia do centro ate a reta é igual ao raio. Então escolhemos um ponto qualquer da reta, por conveniência vamos escolher o ponto onde lambda é igual a zero ou seja o ponto
(1,0,a)
então fazendo o ponto central da esfera menos esse ponto teremos o vetor

calculando o modulo do produto vetorial deste vetor pelo vetor diretoo da reta e dividindo pelo modulo do vetor diretor teremos a distancia da reta ao cento que deve ser igual ao raio

tente concluir, comente se tiver duvidas
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- posição relativa entre a reta r de equações paramétricas
por Ana Maria da Silva » Ter Jun 04, 2013 20:52
- 0 Respostas
- 1235 Exibições
- Última mensagem por Ana Maria da Silva

Ter Jun 04, 2013 20:52
Geometria Analítica
-
- [Geometria Analítica] Posição relativa entre reta e plano
por jennakusterbeck » Qui Set 20, 2012 13:52
- 4 Respostas
- 3374 Exibições
- Última mensagem por jennakusterbeck

Qui Set 20, 2012 17:18
Geometria Analítica
-
- Superfície Esférica
por iarapassos » Ter Set 18, 2012 23:24
- 4 Respostas
- 4338 Exibições
- Última mensagem por young_jedi

Sex Set 21, 2012 18:17
Geometria Analítica
-
- Superfície Esférica
por iarapassos » Sex Set 21, 2012 17:24
- 1 Respostas
- 1449 Exibições
- Última mensagem por young_jedi

Sex Set 21, 2012 18:30
Geometria Analítica
-
- [Superficie Esférica]
por EloiCamara » Ter Jan 10, 2017 12:44
- 1 Respostas
- 1749 Exibições
- Última mensagem por adauto martins

Qui Jan 12, 2017 14:46
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.