por temujin » Qua Mai 29, 2013 19:35
Verdadeiro ou falso:
A soma das coordenadas do ponto na curva

, cuja reta perpendicular a ela passa por (14,1) é 6.

-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por temujin » Sáb Jun 29, 2013 15:14
Galera, estou dando um up nesta questão pra ver se de repente alguém consegue achar uma luz no fim do túnel...
(
V ) A soma das coordenadas na curva

, cuja reta perpendicular a ela passa por (14,1) é 6.
Eu comecei a esboçar uma resposta, achei uma solução no gráfico, mas não estou convencido se está certo. Vejamos:
Se a reta é perpendicular à curva, ela deve ser também perpendicular à reta tangente à curva no ponto em que elas se interceptam.
Como a derivada de

é uma função linear de x, elas se interceptam x=0 ou x=2. Com x=2, f(x)=4 e o ponto (2,4) responde à questão. Mas não consigo provar que neste ponto a reta é perpendicular à curva.
Alguma idéia??

-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
por temujin » Seg Jul 15, 2013 20:04
Acho que eu finalmente consegui! Vou deixar aqui, caso interesse a mais alguém.
A reta que passa por (14,1) intercepta a parábola em dois pontos. Supondo que o item seja verdadeiro, deve valer:

Cujas raízes são 2 e -3.
Testando primeiro

. Um vetor diretor da reta que passa por (2,4) e (14,1) é

.
Agora, se a reta é perpendicular à curva, ela deve ser perpendicular à tangente neste ponto. Derivando:


, e portanto, a reta tangente tem a forma

. Substituindo o ponto (2,4) temos que

Então, a reta tangente tem um vetor diretor

E

Portanto, as retas são perpendiculares.
-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DERIVADA] Reta tangente e Reta perpendicular
por antonelli2006 » Ter Nov 22, 2011 11:21
- 1 Respostas
- 8662 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 14:28
Cálculo: Limites, Derivadas e Integrais
-
- [Eq. Geral do plano] perpendicular a uma reta
por ilariun » Qua Nov 23, 2011 10:45
- 1 Respostas
- 1804 Exibições
- Última mensagem por LuizAquino

Qua Nov 23, 2011 21:02
Geometria Analítica
-
- Seja ? um plano e b uma reta não perpendicular
por GILSON DOS SANTOS » Qui Ago 23, 2012 14:16
- 1 Respostas
- 1407 Exibições
- Última mensagem por MarceloFantini

Qui Ago 23, 2012 16:18
Geometria Espacial
-
- Calcular a distância da reta perpendicular
por brunosob » Dom Out 28, 2012 12:51
- 1 Respostas
- 1583 Exibições
- Última mensagem por MarceloFantini

Dom Out 28, 2012 14:56
Geometria Analítica
-
- Demonstração envolvendo bissetrizes e reta perpendicular
por Balanar » Qui Set 02, 2010 03:07
- 0 Respostas
- 1301 Exibições
- Última mensagem por Balanar

Qui Set 02, 2010 03:07
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.