• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação da Reta] Altura relativa

[Equação da Reta] Altura relativa

Mensagempor Marcos_Mecatronica » Sex Mai 17, 2013 22:08

Sejam, em relação a um sistema ortogonal, A=(1,4,0) , B=(2,1,-1) e C=(1,2,2). Verifique que esses pontos são vértices de um triângulo e escreva uma equação vetorial da reta qeu contém a altura relativa ao vértice B.
Marcos_Mecatronica
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mar 19, 2013 20:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: [Equação da Reta] Altura relativa

Mensagempor Marcos_Mecatronica » Ter Mai 21, 2013 21:09

Alguém?
Marcos_Mecatronica
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mar 19, 2013 20:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: [Equação da Reta] Altura relativa

Mensagempor young_jedi » Ter Mai 21, 2013 23:04

primeiro vamos encontrar a equação da reta AC

A-C=(1,4,0)-(1,2,2)=(0,2,-2)

portanto a equação da reta sera

(x,y,z)=t(0,2,-2)+(1,4,0)

(x,y,z)=(1,2t+4,-2t)

existe um ponto nesta reta que ligado ate o ponto B forma a reta da altura relativa com relação a B, então o vetor diretor desta reta terá que ser perpendicular a reta AC portanto o produto escalar do vetor direto de ambas as retas é igual a zero ou seja:

B-(x,y,z)=(1,-3-2t,-1+2t)

(1,-3-2t,-1+2t)(0,2,-2)=0

-6-4t+2-4t=0

t=-\frac{1}{2}

portanto o ponto onde a reta da altura relativa a B se encontra com a reta AC é

(1,2\left(-\frac{1}{2}\right)+4,-2\left(-\frac{1}{2}\right))=(1,3,1)

agora é so encontrar a reta que contem este ponto e o ponto B
comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: