por roberta emiliano » Qua Nov 28, 2012 11:54
Questão 02- João é um pequeno produtor de farinha para uso medicinal. Deseja embalar a farinha que produz em caixinhas de papelão. A base dessa caixa é retangular, com uma das extremidades no formato da metade de um disco. A altura (espessura) da caixa é de 4 cm e a restrição é que o perímetro da base, seja constante e igual a 50 cm. João deseja fabricar essas caixas de modo que caibam o máximo possível de farinha. CALCULE as dimensões dessa caixa de modo que as exigências de João sejam satisfeitas.
-
roberta emiliano
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 28, 2012 11:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: sistemas de informação
- Andamento: cursando
por Russman » Qua Nov 28, 2012 14:08
Você tentou alguma coisa? Escreveu as equações ao menos ?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por roberta emiliano » Qua Nov 28, 2012 14:58
Não consegui colocar a imagem da figura mas ela fala o seguinte: Que o perímetro do retângulo é 50 e corresponde a área pontilhada da figura que é o raio do semi circulo. Então pensei no seguinte:
Fórmula do raio da circunferência me dá o cumprimento e aí eu dividiria ele por 2.
C= 2* pi* r
C= 2*3,14*50
C=314
Então area do semicirculo seria 157?
Tentei pela área do triângulo que é base * altura
tendo o perímetro como 50, e ele sendo a soma de todos os lados, e tendo a altura igual 4.
a base seria 21?
e a área do retângulo seria 84?
Não sei como fazer pra calcular quanto caberia na caixa, pode me ajudar no raciocínio?
-
roberta emiliano
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 28, 2012 11:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: sistemas de informação
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Por favor me ajudem a resolver isso!
por luisemilio » Sáb Nov 14, 2009 20:51
- 1 Respostas
- 1932 Exibições
- Última mensagem por thadeu

Seg Nov 16, 2009 12:08
Cálculo: Limites, Derivadas e Integrais
-
- Me ajudem a resolver por favor urgente!! obrigada
por mieleoterio » Dom Ago 18, 2013 12:50
- 0 Respostas
- 2638 Exibições
- Última mensagem por mieleoterio

Dom Ago 18, 2013 12:50
Estatística
-
- NAO CVONSIGO RESOLVER ESTE EXERCIO ME AJUDEM POR FAVOR.
por weverton » Sex Mai 14, 2010 02:04
- 2 Respostas
- 2214 Exibições
- Última mensagem por weverton

Sáb Mai 15, 2010 16:13
Matemática Financeira
-
- Ajudem, por favor. Não sei como resolver esse problema.
por Krad » Qua Ago 21, 2013 16:27
- 6 Respostas
- 4058 Exibições
- Última mensagem por Krad

Sáb Ago 24, 2013 12:22
Equações
-
- Não consigo resolver esta questão, por favor me ajudem!
por Derlan » Ter Jul 04, 2017 15:32
- 0 Respostas
- 1852 Exibições
- Última mensagem por Derlan

Ter Jul 04, 2017 15:32
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.