• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetor unitário

Vetor unitário

Mensagempor Raphaelphtp » Qua Jan 11, 2017 20:59

Qual dos vetores abaixo não é caracterizado como um vetor unitário?:
A.( ) (-2, 0, 0).
B.( ) (0, 1, 0).
C.( ) (1, -1, 2).
D.( ) (3, 0, 0).

Achei estranha a pergunta pois, para mim, o único vetor unitário é o da letra B. Mas o enunciado pede qual não é caracterizado como vetor unitario.
Raphaelphtp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Dez 20, 2016 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: formado

Re: Vetor unitário

Mensagempor adauto martins » Sáb Jan 14, 2017 10:46

meu caro rafael,
vc esta correto...e a pergunta esta mal formulada...concordo...
um vetor é unitario qdo sua norma,comprimento,...é igual 1...
dado um vetor v=(x,y,z)\Rightarrow \left|u \right|=\sqrt[]{{x}^{2}+{y}^{2}+{z}^{2}}...
a)
v=(-2,0,0)\Rightarrow \left|v \right|=\sqrt[]{({-2})^{2}+{0}^{2}+{0}^{2}}=2 e as demais letras,menos a b) tera norma diferente de 1...nosso ensino de matematica,assim como nosso matematica aqui no BRASIL esta pessimo...as ediçoes de livros atuais em todos os niveis de ensino em matematica estao pessimos...é isso meu caro...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Vetor unitário

Mensagempor Raphaelphtp » Seg Jan 16, 2017 09:27

Adauto, mais uma vez obrigado, só para dar um feedback, realmente a questão não deveria ter aquele "não", marquei o único unitário e estava certo.
Raphaelphtp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Dez 20, 2016 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: formado

Re: Vetor unitário

Mensagempor adauto martins » Seg Jan 16, 2017 11:04

isso mesmo meu caro rafa...o unico vetor unitario das opçoes e o da letra b)...vc esta correto e perg. mal formulada...deveria ser qual dos vetores caracteriza um vetor unitario...como discorri pra vc,sobre vetores unitarios...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?