• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações do Plano] Geometria Analitica

[Equações do Plano] Geometria Analitica

Mensagempor caique » Qui Abr 23, 2015 00:22

Favor ajudar com exercicio em anexo.

Att,
Anexos
avga.jpg
Exercicio
caique
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 23, 2015 00:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da computacao
Andamento: cursando

Re: [Equações do Plano] Geometria Analitica

Mensagempor DanielFerreira » Qua Abr 29, 2015 20:10

Dada a equação \pi : \left\{\begin{matrix}x = 1 - \mu + 0\lambda \\ y = 2 + 2\mu + 0\lambda \\ z = 1 + 0\mu + \lambda \end{matrix}\right. tiramos dois vetores diretores, são eles: \vec{u} = (- 1, 2, 0) e \vec{v} = (0, 0, 1).

Calculemos o produto vetorial entre eles afim de encontrar o vetor normal...

\\ \vec{u} \wedge \vec{v} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\ 
- 1 & 2 & 0 \\ 
0 & 0 & 1 
\end{vmatrix} \\\\ \vec{u} \wedge \vec{v} = 2\vec{i} + \vec{j} = \\\\ \boxed{\vec{u} \wedge \vec{v} = (2, 1, 0)}

Daí, fazendo \mu = \lambda = 0 obtemos (1, 2, 1) que pertence à equação do plano.

\\ ax + by + cz + d = 0 \\ 2x + y + 0 + d = 0 \\ 2 \cdot 1 + 2 + d = 0 \\ \boxed{d = - 4}

Por fim, temos que a equação do plano é dada por \boxed{\boxed{2x + y - 4 = 0}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59