• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[GA] Ângulos entre planos

[GA] Ângulos entre planos

Mensagempor Larissa28 » Dom Abr 05, 2015 10:03

Calcule os ângulos entre os planos diagonais (planos determinados pelas arestas opostas) do paralelogramo em que quatro vértices consecutivos são O(0,0,0), A(1,0,0), B(1,1,0) e C(0,1,1).
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [GA] Ângulos entre planos

Mensagempor adauto martins » Seg Abr 06, 2015 12:34

vamos tomar os planos diagonais do paralelogramo...
seja o plano determinado pelos pontos,OB, cujo vetor normal eh:
v=OBX(OA+OC)=i-j=(1,-1,0)seja o plano determ.por AC, cujo vetor normal eh:
[tex]w=OBX(OC-OA)=i-j+2k=(1,-1,2)...entao:
v.w=\left|v \right|\left|w \right|cos(v,w)\Rightarrow cos(v,w)=v.w/(\left|v \right|.\left|w \right|)=(1,-1,0)(1,-1,2)/(2\sqrt[]{2})=1+1+0/2\sqrt[]{2}=1/\sqrt[]{2}=\sqrt[]{2}/2\Rightarrow (v,w)=arcos(\sqrt[]{2}/2)=\pi/4\Rightarrow (v,w)=45°
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [GA] Ângulos entre planos

Mensagempor adauto martins » Qui Abr 09, 2015 16:32

oiii garota,essa minha soluçao nao esta correta,pois AC nao eh diagonal do paralelogramo solido...vou procurar resolve-lo e posto aqui,tbao...me desculpe...apareçaaaa...bons estudos
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [GA] Ângulos entre planos

Mensagempor adauto martins » Sex Abr 10, 2015 11:29

pelos dados do problema,temos q.
os ptos 0,A,B,C sao vertices de um pararalepido,mas o pto O,nao pertence a fase definida pelos ptos A,B,C...
pelo proprio enunciado podemops ter:D(0,0,1)eixo-z,E(0,1,0)eixo-y do pararalelpipedo,e esses ptos com os ptos dados sao suficientes p/resoluçao...
no primeiro octante temos:
ABCD definem uma face,OABE definem a fase no plano xy,logo...
os vetores OB,OC definem um plano diagonal,e AE,AC definem a outro plano diagonal...
logo, v=OBXOC...w=AEXAC...sao os vetores normais a esses planos diagonais...entao...v=OBXOC=
\begin{vmatrix}
   i & j & k \\ 
   1 & 1 & 0 \\
   0 & 1 & 1 \\
\end{vmatrix}=i-j+k=(1,-1,1)
w=AEXAC=\begin{vmatrix}
   i & j & k \\ 
   -1 & 1 & 0 \\
   -1 & 1 & 1 \\
\end{vmatrix}=i-j=(1,-1,0),entao...
v.w=\left|v \right|\left|w \right|cos(v,w)\Rightarrow cos(v,w)=v.w/(\left|v \right|\left|w \right|)
cos(v,w)=1.1+(-1).(-1)+1.0/(\sqrt[]{3}.\sqrt[]{2})=\Rightarrow (v,w)=arcos(2/\sqrt[]{6})
(u,w)\simeq 66°
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}