• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo de reta e estudo do plano

Estudo de reta e estudo do plano

Mensagempor Livingstone » Sex Dez 12, 2014 15:27

Alguem pode me ajudar?

1) Encontre as equações parametricas da reta que passa por (0,-1,5) e e perpendicular ao plano 3x-y+9z=6
Livingstone
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Dez 11, 2014 18:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrônica e de telecomunicaç
Andamento: cursando

Re: Estudo de reta e estudo do plano

Mensagempor adauto martins » Ter Dez 16, 2014 10:43

o vetor v=(3,-1,9) eh perpendicular ao plano...logo sera paralelo a reta:
(x,y,t)=(0,-1,5)+vt=(0,-1,5)+t(3,-1,9)=(3t,-1-t,5+9t)\Rightarrow
x=3t,y=-1-t,z=5+9t...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.