• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Helicóptero e uma cônica

Helicóptero e uma cônica

Mensagempor kesinhazzz » Seg Dez 14, 2009 16:21

Um helicóptero está parado a 50 m de altura, sobre um terreno plano. Uma corda com
8 m de comprimento, presa ao helicóptero, sustenta um contêiner de 2 m x 2 m x 2 m.
Um holofote, fixo sob o helicóptero, junto à corda, lança um facho de luz perpendicular
ao solo, formando uma área iluminada pela curva de equação x2 + y2 = 2.500.
A) Considerando essas informações, FAÇA um esboço do desenho mostrando a situação
descrita.
B) Num determinado instante, o helicóptero começa a descer verticalmente, a uma taxa
de 2 m/s .
Assim sendo, CALCULE a área da superfície do solo iluminada pelo holofote, no
momento em que o contêiner tocar o solo.

Tá, é uma equação da elipse, mas quando eu faço x²/a² + y²/b²=1, a e b têm o mesmo valor, 50.
Daí não dá pra ser uma elipse, pois a é a hipotenusa e b o cateto junto com c (metade da distância entre os focos) do triângulo retângulo formado no interior da cônica, certo? :$ Não entendi! Me ajuda a fazer?
kesinhazzz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Dez 14, 2009 16:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Helicóptero e uma cônica

Mensagempor Elcioschin » Ter Dez 15, 2009 13:31

Vc está enganado quanto à curva:

x² + y² = 500 ---> x² + y² = (10*V5)² ----> Equação de uma CIRCUNFERÊNCIA de raio R = 10*V5

Seja A o ângulo que o holofote faz com a vertical ----> tgA = R/H ----> tgA = 10*V5/50 ----> tgA = V5/5

Este ângulo é sempre constante. No momento em que o container atinge o solo h = 8:

tgA = r/h ----> V5/5 = r/8 ----> r = 8*V5/5 ----> Raio do novo círculo iluminado.

S = pi*r² ----> S = pi*(8*V5/5)² ----> S = 64*pi/5
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.