8 m de comprimento, presa ao helicóptero, sustenta um contêiner de 2 m x 2 m x 2 m.
Um holofote, fixo sob o helicóptero, junto à corda, lança um facho de luz perpendicular
ao solo, formando uma área iluminada pela curva de equação x2 + y2 = 2.500.
A) Considerando essas informações, FAÇA um esboço do desenho mostrando a situação
descrita.
B) Num determinado instante, o helicóptero começa a descer verticalmente, a uma taxa
de 2 m/s .
Assim sendo, CALCULE a área da superfície do solo iluminada pelo holofote, no
momento em que o contêiner tocar o solo.
Tá, é uma equação da elipse, mas quando eu faço x²/a² + y²/b²=1, a e b têm o mesmo valor, 50.
Daí não dá pra ser uma elipse, pois a é a hipotenusa e b o cateto junto com c (metade da distância entre os focos) do triângulo retângulo formado no interior da cônica, certo?
Não entendi! Me ajuda a fazer?


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.