por amigao » Sex Mai 09, 2014 16:37
Não consigo fazer esse exercício, minha resposta deu diferente na segunda coordenada do vetor. Alguém pode me ajudar?
Grato.
- Anexos
-

- exercicio
-
amigao
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Mai 11, 2013 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Russman » Sex Mai 09, 2014 17:25
Derive uma vez com relação ao tempo a aceleração. Você obterá uma família de funções candidatas a ser a velocidade da partícula. Use a velocidade dada no instante mencionado para selecionar uma dentre todas. Feita a escolha, derive esta com relação ao tempo e você obterá uma outra família de funções candidatas a ser a posição da partícula. Faça o mesmo que vez para a velocidade para escolher uma. Uma vez feita a escolha, aplique o tempo que deseja obter a posição e a terá.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [CURVAS] ângulo entre vetor tangente e vetor posição
por inkz » Ter Nov 20, 2012 01:24
- 5 Respostas
- 4889 Exibições
- Última mensagem por LuannLuna

Qui Nov 29, 2012 15:05
Cálculo: Limites, Derivadas e Integrais
-
- Vetor de posição polar
por Jhenrique » Seg Nov 11, 2013 20:23
- 0 Respostas
- 1074 Exibições
- Última mensagem por Jhenrique

Seg Nov 11, 2013 20:23
Geometria Analítica
-
- Integral de uma Aceleração
por Atirador » Sáb Nov 18, 2017 18:36
- 0 Respostas
- 5321 Exibições
- Última mensagem por Atirador

Sáb Nov 18, 2017 18:36
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - Velocidade e Aceleração
por Fabio Cabral » Ter Jun 14, 2011 14:49
- 1 Respostas
- 4444 Exibições
- Última mensagem por carlosalesouza

Ter Jun 14, 2011 15:40
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Problema com aceleração
por MrJuniorFerr » Sáb Nov 10, 2012 20:19
- 4 Respostas
- 3283 Exibições
- Última mensagem por young_jedi

Sáb Nov 10, 2012 21:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.