• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[cefet mg matematica]

[cefet mg matematica]

Mensagempor tayna01 » Ter Abr 08, 2014 11:15

Estouu com uma grande dúvida nessa questão.. Alguem poderia me ensinar como resolve-la? muito obrigada..

A reta r tangencia a parábola de equação y= -3x^2 - 4x + 1, no ponto P(a,b), como mostra a figura abaixo. A média aritmética das coordenadas do ponto P vale?

https://s.yimg.com/hd/answers/i/67f4334816b84f0cb732283bb8e004a3_A.jpeg?a=answers&mr=0&x=1396916478&s=35c3157f14d6ccf4185673b66858c3b4

Ps . A RESPOSTA É -1/2. Muito obrigada.
tayna01
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 08, 2014 11:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [cefet mg matematica]

Mensagempor Russman » Ter Abr 08, 2014 23:50

Suponhamos que a reta seja r(x) = kx+t. Como a mesma tangencia a parábola em P(a,b) então precisamos que

\frac{\mathrm{d} }{\mathrm{d} x}y(x) \left   \right |_{x=a} =k
y(a)=r(a)=b

Primeiro, \frac{\mathrm{d} }{\mathrm{d} x}y(x) = -6x-4 \Rightarrow k=-6a-4.
Agora,

y(a) = b \Rightarrow -3a^2-4a+1=b \Rightarrow -3a^2-4a+(1-b)=0
r(a)=b \Rightarrow ka+t=b

Da figura, claramente r(0)=4 e r(-2) = 0. Daí, k=2, t=4 e, portanto,
r(x) = 2t+4.

Pronto, podemos calcular a e b.

Da primeira relação, 2=-6.a-4  \Rightarrow a=-1. Da última, b = 2.(-1) + 4 = 2.

Assim, \frac{a+b}{2} = \frac{-1+2}{2} = \frac{1}{2}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [cefet mg matematica]

Mensagempor tayna01 » Qua Abr 09, 2014 13:28

muitoooo obrigadaa pela ajuda... :) entendii tudo :)
tayna01
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 08, 2014 11:07
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?