por Suellem Albuquerque » Sex Mar 28, 2014 15:36
Calculo de um vetor no plano r³
sendo
C = ( 1,0,-?¯ 5)
D= (2, 5, ?¯ 25)
Resolvi assim
|CD | = ?¯(2-1)² + (5-0)² + (?¯25-(-?¯5)²
|CD | = ?¯(1)² + (5)² + (5+?¯5)²
|CD | = ?¯1 + 25 + 25 + 5
|CD | = ?¯46
Ta certo ?

-
Suellem Albuquerque
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mar 28, 2014 15:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng Quimica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Analitica e Calculo Vetorial
por Idoso-RJ » Ter Out 20, 2009 12:57
- 4 Respostas
- 4252 Exibições
- Última mensagem por Idoso-RJ

Qui Out 22, 2009 17:20
Geometria Analítica
-
- [calculo vetorial e geometria analitica] produto escalar
por eulercx » Sáb Nov 07, 2015 16:57
- 0 Respostas
- 2370 Exibições
- Última mensagem por eulercx

Sáb Nov 07, 2015 16:57
Geometria Analítica
-
- produto escalar calculo vetorial e geometria analitica.
por eulercx » Sáb Nov 07, 2015 16:55
- 0 Respostas
- 2140 Exibições
- Última mensagem por eulercx

Sáb Nov 07, 2015 16:55
Geometria Analítica
-
- Geometria Analitica ( Vetor)
por raf » Qui Jun 11, 2015 03:46
- 1 Respostas
- 7560 Exibições
- Última mensagem por nakagumahissao

Sex Jun 12, 2015 15:37
Geometria Analítica
-
- [Geometria Analítica] - Encontrar o módulo de s.
por Nicolas1Lane » Dom Mar 23, 2014 00:33
- 2 Respostas
- 1564 Exibições
- Última mensagem por Nicolas1Lane

Dom Mar 23, 2014 19:13
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.