• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Comprimento de arco de curva polar]

[Comprimento de arco de curva polar]

Mensagempor dehcalegari » Seg Nov 11, 2013 17:33

Perdi umas aulas, e não sei nem por onde começar...

Calcular o comprimento de arco da curva polar: O círculo inteiro r = a.

Ajudem, pf.
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Comprimento de arco de curva polar]

Mensagempor e8group » Seg Nov 11, 2013 18:09

Seja C uma curva no plano xy . E suponha \sigma : t \mapsto (x(t),y(t)) uma função vetorial de classe C^{1} . Se C possui uma parametrização dada por \sigma . Para pontos distintos A =\sigma(t_0) ,B =\sigma(t_1) em C , temos que o comprimento do arco AB é dado por

\int_{t_0}^{t_1} || \sigma'(t) || dt   = \int_{t_0}^{t} \sqrt{x'(t)^2 +y'(t)^2} dt .

Para o caso particular de C ser um circulo centrado na origem de raio r = a ,temos que \sigma : t \mapsto (acos(t),a sin(t)) é uma parametrização p/ C .

Com t_0 = 0 e t_1 = 2\pi , obterá :

\int_{t_0}^{t_1} || \sigma'(t) || dt   = \int_{t_0}^{t} \sqrt{x'(t)^2 +y'(t)^2} dt  =\int_{t_0}^{t_1} \sqrt{a^2}dt = \int_{t_0}^{t_1} |a| dt = \int_{t_0}^{t_1} a dt = (t_1-t_0) a = 2\pi a

que é o comprimento de arco do circulo inteiro .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.