por fyensinomedio » Sex Nov 08, 2013 13:04
O enunciado é : Um polígono regular de 16 lados tem o centro na origem e um de seus vértices está no ponto A=(0,1), Ache as equações das retas que passam pelo centro e por cada um de seus vértices.
Não consegui fazer muito.
Origem =(0,0). E pensei em fazer a determinante igual a zero entre ele e A.
Mas depois não consegui fazer mais nada.
-
fyensinomedio
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Nov 08, 2013 12:48
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Sex Nov 08, 2013 20:38
Tenho uma dica que talvez possa ajudar .Comece notando que este polígono regular está inscrito em uma circunferência centrada na origem de raio 1 ,a princípio qualquer reta que passa pela origem intersectará o circulo em dois pontos que são simétricos em relação a origem (0,0) . Ora , se a reta passa pela origem , segue que seu coeficiente linear é zero e tendo conta seu coef. angular é dado por

,escrevemos a forma geral da equação da reta

. Variando

em
![[0,2\pi] [0,2\pi]](/latexrender/pictures/1cc5fb6d3b10cf0b4029e23d46fa7fc0.png)
exceto nos pontos onde função tangente não estar definida que são

,obteremos infinitas retas que intersectam o circulo ,destas retas , 7 delas passará por pares de vértices do polígono regular .No total teremos 8 retas ,sendo incluída a reta

.
Espero que ajude . Tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Plana] Polígono Regular
por edinaldoprof » Seg Fev 13, 2017 14:08
- 0 Respostas
- 2394 Exibições
- Última mensagem por edinaldoprof

Seg Fev 13, 2017 14:08
Geometria Plana
-
- Polígono regular
por Well » Seg Abr 16, 2012 19:47
- 0 Respostas
- 2014 Exibições
- Última mensagem por Well

Seg Abr 16, 2012 19:47
Geometria Plana
-
- [Geometria Espacial] Octaedro regular
por rochadapesada » Qui Abr 11, 2013 18:15
- 2 Respostas
- 6276 Exibições
- Última mensagem por rochadapesada

Dom Abr 14, 2013 17:33
Geometria Espacial
-
- UF-MG- Geometria. Determine a área do polígono
por andersontricordiano » Qua Mar 16, 2011 16:43
- 8 Respostas
- 5258 Exibições
- Última mensagem por LuizAquino

Sáb Mar 26, 2011 10:21
Geometria Plana
-
- [GEOMETRIA] Calcular o lado de um polígono
por milenaponte » Qui Jun 11, 2015 12:15
- 2 Respostas
- 3124 Exibições
- Última mensagem por milenaponte

Qui Jun 11, 2015 21:39
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.