• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quádrica - identificar quádrica

Quádrica - identificar quádrica

Mensagempor renan_a » Qui Fev 07, 2013 08:57

Fala pessoal , beleza.
Estou com um exercício do livro vetores e geometria analítica, do paulo winterle , e não consigo resolver o seguinte exercícios::

identificar e representar graficamente as superfífices expressas pelas equações nos intervalos dados:

m) y² - x² = 16 0\leqz\leq4

Meu professor geralmente pede que mostremos as 3 interseções, ou seja
quando z = 0 , tenho y² - x² = 16 = hipérbole equilátera
quando x=0 , tenho y² = 14 --> y= +/- 4
quando y=0 , tenho x² = -16 --> x= sem raiz real

Até aqui, é isso??

o segundo passo seria igualar a variável em que está servindo de eixo de rotação da superfície às delimitações do problema, ou seja, z=0 e z=4 , porém não consigo fazer isso, pois ela não está na equação...
Como devo proceder para encontrar o ponto, conica, etc que pode haver em z=0 e z=4 para eu poder desenhar a superfície
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Quádrica - identificar quádrica

Mensagempor LuizAquino » Ter Fev 19, 2013 14:04

renan_a escreveu:identificar e representar graficamente as superfífices expressas pelas equações nos intervalos dados:

m) y² - x² = 16 0\leq z \leq 4

Meu professor geralmente pede que mostremos as 3 interseções, ou seja
quando z = 0 , tenho y² - x² = 16 = hipérbole equilátera
quando x=0 , tenho y² = 14 --> y= +/- 4
quando y=0 , tenho x² = -16 --> x= sem raiz real

Até aqui, é isso??


Você esqueceu de mencionar que quando x = 0 temos que y = 4 e y = -4 são retas paralelas ao eixo z (e passando, respectivamente, por (0, 4, 0) e (0, -4, 0)).

renan_a escreveu:o segundo passo seria igualar a variável em que está servindo de eixo de rotação da superfície às delimitações do problema, ou seja, z=0 e z=4 , porém não consigo fazer isso, pois ela não está na equação...


Bem, o eixo z não está servindo como "eixo de rotação" nesse caso. Quando você fizer o esboço da superfície perceberá que ela não é formada através de uma revolução.

renan_a escreveu:Como devo proceder para encontrar o ponto, conica, etc que pode haver em z=0 e z=4 para eu poder desenhar a superfície


Vamos pensar um pouco... "Traduzindo" o que o exercício diz, dado um ponto P = (x, y, z) dessa superfície, temos que para qualquer z no intervalo [0, 4] irá acontecer que y² - x² = 16.

Vamos escolher, por exemplo, z = 4. Geometricamente falando, o que significa z = 4? Ora, sabemos que isso representa um plano paralelo a xy e que passa por (0, 0, 4). Temos ainda que para os pontos P = (x, y, 4) da superfície, devemos ter y² - x² = 16. Juntando essas informações, temos que sobre o plano z = 4 a superfície formará a hipérbole y² - x² = 16.

Generalizando a ideia, temos que para z = k, com k no intervalo [0, 4], os pontos P = (x, y, k) dessa superfície formarão sobre o plano z = k a hipérbole y² - x² = 16.

Conclusão: a superfície é formada "empilhando" a hipérbole y² - x² = 16, começando no plano z = 0 e indo até z = 4.

A figura abaixo ilustra a superfície. Note que ela não é formada por uma revolução. Mais um detalhe: este tipo de superfície é conhecida como cilindro hiperbólico.

superficie.png
superficie.png (22.08 KiB) Exibido 2282 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?