por renan_a » Qui Fev 07, 2013 08:57
Fala pessoal , beleza.
Estou com um exercício do livro vetores e geometria analítica, do paulo winterle , e não consigo resolver o seguinte exercícios::
identificar e representar graficamente as superfífices expressas pelas equações nos intervalos dados:
m) y² - x² = 16 0

z

4
Meu professor geralmente pede que mostremos as 3 interseções, ou seja
quando z = 0 , tenho y² - x² = 16 = hipérbole equilátera
quando x=0 , tenho y² = 14 --> y= +/- 4
quando y=0 , tenho x² = -16 --> x= sem raiz real
Até aqui, é isso??
o segundo passo seria igualar a variável em que está servindo de eixo de rotação da superfície às delimitações do problema, ou seja, z=0 e z=4 , porém não consigo fazer isso, pois ela não está na equação...
Como devo proceder para encontrar o ponto, conica, etc que pode haver em z=0 e z=4 para eu poder desenhar a superfície
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por LuizAquino » Ter Fev 19, 2013 14:04
renan_a escreveu:identificar e representar graficamente as superfífices expressas pelas equações nos intervalos dados:
m) y² - x² = 16

Meu professor geralmente pede que mostremos as 3 interseções, ou seja
quando z = 0 , tenho y² - x² = 16 = hipérbole equilátera
quando x=0 , tenho y² = 14 --> y= +/- 4
quando y=0 , tenho x² = -16 --> x= sem raiz real
Até aqui, é isso??
Você esqueceu de mencionar que quando x = 0 temos que y = 4 e y = -4 são retas paralelas ao eixo z (e passando, respectivamente, por (0, 4, 0) e (0, -4, 0)).
renan_a escreveu:o segundo passo seria igualar a variável em que está servindo de eixo de rotação da superfície às delimitações do problema, ou seja, z=0 e z=4 , porém não consigo fazer isso, pois ela não está na equação...
Bem, o eixo z não está servindo como "eixo de rotação" nesse caso. Quando você fizer o esboço da superfície perceberá que ela não é formada através de uma revolução.
renan_a escreveu:Como devo proceder para encontrar o ponto, conica, etc que pode haver em z=0 e z=4 para eu poder desenhar a superfície
Vamos pensar um pouco... "Traduzindo" o que o exercício diz, dado um ponto P = (x, y, z) dessa superfície, temos que
para qualquer z no intervalo [0, 4] irá acontecer que y² - x² = 16.
Vamos escolher, por exemplo, z = 4. Geometricamente falando, o que significa z = 4? Ora, sabemos que isso representa um plano paralelo a xy e que passa por (0, 0, 4). Temos ainda que para os pontos P = (x, y, 4) da superfície, devemos ter y² - x² = 16. Juntando essas informações, temos que sobre o plano z = 4 a superfície formará a hipérbole y² - x² = 16.
Generalizando a ideia, temos que para z = k, com k no intervalo [0, 4], os pontos P = (x, y, k) dessa superfície formarão sobre o plano z = k a hipérbole y² - x² = 16.
Conclusão: a superfície é formada "empilhando" a hipérbole y² - x² = 16, começando no plano z = 0 e indo até z = 4.
A figura abaixo ilustra a superfície. Note que ela não é formada por uma revolução. Mais um detalhe: este tipo de superfície é conhecida como
cilindro hiperbólico.

- superficie.png (22.08 KiB) Exibido 2282 vezes
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [geometria analítica] quádrica
por lins » Qua Mar 28, 2018 22:20
- 0 Respostas
- 5448 Exibições
- Última mensagem por lins

Qua Mar 28, 2018 22:20
Geometria Analítica
-
- Identificar funções pares e ímpares
por vmouc » Sex Mar 11, 2011 00:17
- 6 Respostas
- 5522 Exibições
- Última mensagem por vmouc

Sex Mar 11, 2011 19:33
Funções
-
- Identificar erro na resolução, se houver
por Danilo » Seg Mar 19, 2012 22:46
- 2 Respostas
- 2003 Exibições
- Última mensagem por Juvenal

Qua Mar 21, 2012 10:08
Álgebra Elementar
-
- Como posso Identificar o domínio ?
por Amanda j » Seg Out 24, 2016 12:57
- 0 Respostas
- 3667 Exibições
- Última mensagem por Amanda j

Seg Out 24, 2016 12:57
Cálculo: Limites, Derivadas e Integrais
-
- [Polinômios] como identificar o padrão?
por Guga1981 » Ter Dez 13, 2016 09:24
- 4 Respostas
- 11648 Exibições
- Última mensagem por adauto martins

Sex Dez 16, 2016 10:59
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.