• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quádrica - identificar quádrica

Quádrica - identificar quádrica

Mensagempor renan_a » Qui Fev 07, 2013 08:57

Fala pessoal , beleza.
Estou com um exercício do livro vetores e geometria analítica, do paulo winterle , e não consigo resolver o seguinte exercícios::

identificar e representar graficamente as superfífices expressas pelas equações nos intervalos dados:

m) y² - x² = 16 0\leqz\leq4

Meu professor geralmente pede que mostremos as 3 interseções, ou seja
quando z = 0 , tenho y² - x² = 16 = hipérbole equilátera
quando x=0 , tenho y² = 14 --> y= +/- 4
quando y=0 , tenho x² = -16 --> x= sem raiz real

Até aqui, é isso??

o segundo passo seria igualar a variável em que está servindo de eixo de rotação da superfície às delimitações do problema, ou seja, z=0 e z=4 , porém não consigo fazer isso, pois ela não está na equação...
Como devo proceder para encontrar o ponto, conica, etc que pode haver em z=0 e z=4 para eu poder desenhar a superfície
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Quádrica - identificar quádrica

Mensagempor LuizAquino » Ter Fev 19, 2013 14:04

renan_a escreveu:identificar e representar graficamente as superfífices expressas pelas equações nos intervalos dados:

m) y² - x² = 16 0\leq z \leq 4

Meu professor geralmente pede que mostremos as 3 interseções, ou seja
quando z = 0 , tenho y² - x² = 16 = hipérbole equilátera
quando x=0 , tenho y² = 14 --> y= +/- 4
quando y=0 , tenho x² = -16 --> x= sem raiz real

Até aqui, é isso??


Você esqueceu de mencionar que quando x = 0 temos que y = 4 e y = -4 são retas paralelas ao eixo z (e passando, respectivamente, por (0, 4, 0) e (0, -4, 0)).

renan_a escreveu:o segundo passo seria igualar a variável em que está servindo de eixo de rotação da superfície às delimitações do problema, ou seja, z=0 e z=4 , porém não consigo fazer isso, pois ela não está na equação...


Bem, o eixo z não está servindo como "eixo de rotação" nesse caso. Quando você fizer o esboço da superfície perceberá que ela não é formada através de uma revolução.

renan_a escreveu:Como devo proceder para encontrar o ponto, conica, etc que pode haver em z=0 e z=4 para eu poder desenhar a superfície


Vamos pensar um pouco... "Traduzindo" o que o exercício diz, dado um ponto P = (x, y, z) dessa superfície, temos que para qualquer z no intervalo [0, 4] irá acontecer que y² - x² = 16.

Vamos escolher, por exemplo, z = 4. Geometricamente falando, o que significa z = 4? Ora, sabemos que isso representa um plano paralelo a xy e que passa por (0, 0, 4). Temos ainda que para os pontos P = (x, y, 4) da superfície, devemos ter y² - x² = 16. Juntando essas informações, temos que sobre o plano z = 4 a superfície formará a hipérbole y² - x² = 16.

Generalizando a ideia, temos que para z = k, com k no intervalo [0, 4], os pontos P = (x, y, k) dessa superfície formarão sobre o plano z = k a hipérbole y² - x² = 16.

Conclusão: a superfície é formada "empilhando" a hipérbole y² - x² = 16, começando no plano z = 0 e indo até z = 4.

A figura abaixo ilustra a superfície. Note que ela não é formada por uma revolução. Mais um detalhe: este tipo de superfície é conhecida como cilindro hiperbólico.

superficie.png
superficie.png (22.08 KiB) Exibido 2280 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: