por renan_a » Seg Jan 21, 2013 00:13
Olá pessoal!
![\sqrt[]{6} \sqrt[]{6}](/latexrender/pictures/bd95d60cfbcfe62be13a43e39e60bbdb.png)
Me deparei com duas questões de quádricas, nas quais não consigo resolver, porém não me parecem ser tão difíceis.
1 - descrever a equação do parabolóide de vértice na origem , sabendo que sua interseção com o plano z=4 é a circunferencia de C(0,0,4) e raio 3.
2- O traço de um elipsóide centrado na origem no plano xy é a elipse x^2 + y^2/4 = 1 , quando z=0 . Determinar a equação do elipsóide sabendo que contém o ponto (0,1,
![\sqrt[]{6} \sqrt[]{6}](/latexrender/pictures/bd95d60cfbcfe62be13a43e39e60bbdb.png)
)
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por LuizAquino » Sex Fev 01, 2013 10:44
renan_a escreveu:1 - descrever a equação do parabolóide de vértice na origem , sabendo que sua interseção com o plano z=4 é a circunferencia de C(0,0,4) e raio 3.
Como a interseção do paraboloide com o plano z = 4 é uma circunferência (e este paraboloide tem vértice na origem), temos que o formato de sua equação será:

Determinando a interseção desse paraboloide com o plano z = 4, obtemos:


Note que esta deve ser uma circunferência de raio 3 (sendo que seu centro já é (0, 0, 4)).
Agora tente concluir o exercício a partir daí.
renan_a escreveu:2- O traço de um elipsóide centrado na origem no plano xy é a elipse x^2 + y^2/4 = 1 , quando z=0 . Determinar a equação do elipsóide sabendo que contém o ponto (0,1,
![\sqrt[]{6} \sqrt[]{6}](/latexrender/pictures/bd95d60cfbcfe62be13a43e39e60bbdb.png)
)
Como o elipsoide está centrado na origem e sua interseção com o plano z = 0 é uma elipse, temos que sua equação está no formato:

Sabemos que sua interseção com o plano z = 0 é dada por:


Por outro lado, foi dito que essa interseção é a elipse:

Disso concluímos que

e

. Falta então determinar

para completar a equação do elipsoide. Para isso, basta usar o fato de que o elipsoide contém o ponto

. Ou seja, podemos substituir esse ponto na equação do elipsoide.
Agora tente concluir o exercício a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renan_a » Qui Fev 07, 2013 08:43
Bá cara, brigadão pelas respostas. Conssegui compreender direitinho. Abraço
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questões de cônicas e quádricas
por sorchilas » Sáb Dez 11, 2010 12:55
- 9 Respostas
- 7050 Exibições
- Última mensagem por sorchilas

Seg Dez 13, 2010 12:30
Geometria Analítica
-
- Duas questões
por caio123 » Qua Ago 24, 2011 20:22
- 0 Respostas
- 1493 Exibições
- Última mensagem por caio123

Qua Ago 24, 2011 20:22
Logaritmos
-
- Duas questões de Geometria.
por JoaoGabriel » Dom Set 26, 2010 09:34
- 4 Respostas
- 7628 Exibições
- Última mensagem por JoaoGabriel

Dom Set 26, 2010 14:49
Geometria Plana
-
- Duas questões de complexos
por Joseaugusto » Seg Abr 09, 2012 10:43
- 3 Respostas
- 3698 Exibições
- Última mensagem por fraol

Ter Abr 10, 2012 10:35
Números Complexos
-
- Dúvidas com essas duas questões.
por Dimas » Qui Dez 09, 2010 12:42
- 0 Respostas
- 1363 Exibições
- Última mensagem por Dimas

Qui Dez 09, 2010 12:42
Binômio de Newton
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.