• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Outros sistemas de coordendas

Outros sistemas de coordendas

Mensagempor Jhenrique » Sex Dez 28, 2012 04:07

Saudações caros estudantes!

Quando a gente plota a função f(x)=\frac{1}{x} fica óbvio que para x=0 a função não é definida, pois quando x tende a 0 pela esquerda f(x) tende -?, ao passo que, pela dirieta, f(x) tende a +?. Enfim, dizemos que a função não é contínua em zero! No entanto, eu comecei a observar que tal função poderia ser contínua em zero sim, comecei a observar que ela poderia se conectar nos extremos, mas isto seria impossível de ocorrer no plano cartesiano, pois é baseado em duas retas ortogonais. Então eu idealizei uma superfície coordenada, onde os infinitos se conectam e os zeros também, formando pólos, ficando compreendido o infinito dentro de um certo intervalo assim como compreendemos o infinitesimal entre 1 e 0 *.

1.PNG

Então os eixos não são mais retas e sim curvas, mas ainda sendo elementos unidimensionais:
3.PNG

E eu pensei numa forma de ratificar essa superfície esférica também, tomando o raio da esfera em função dos dois ângulos que ela possui, isso gera uma superfície quadrada: o plano onde podemos identificar os eixos x e y como retas, assim:
2.PNG


Então neste tópico eu propus duas possíveis alternativas: uma "esfera cartesiana" para análises de gráficos e uma relação entre superfícies esféricas e superfícies planas, que nada mais é o fruto do raio em função dos ângulos.

* Penso que não há nada de mais em querer comprimir o infinito dentro de um intervalo visível, não é isso que fazemos quando plotamos \frac{1}{sen(x)} ? O espaço vazio que fica entre 0 e 1 desta função não é o mesmo espaço vazio que fica entre 1 e ? da função sen(x) ? Em vez de invertermos multiplicativamente o eixo y invertemos multiplicativamente a função, não é verdade? (estas não são perguntas retóricas, são dúvidas mesmo)

E então, pergunto aos matemáticos mais experientes do fórum, isso é relevante pra vocês? Por que sim? Por que não?

Grato!

Jhenrique
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Outros sistemas de coordendas

Mensagempor Jhenrique » Seg Dez 31, 2012 23:19

Nem uma opiniãozinha???
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59