• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gostaria da ajuda para a equação polar

Gostaria da ajuda para a equação polar

Mensagempor sueliasuki » Qua Out 31, 2012 15:39

Gostaria de ajuda com a questão:

1) Transformar a equação polar {r}^{2}= 4 sen (2 \theta)
sueliasuki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Ago 23, 2012 18:11
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: Gostaria da ajuda para a equação polar

Mensagempor Russman » Qua Out 31, 2012 18:02

É só você lembrar que r^2 = x^2 + y^2 ,x=r.cos(\theta) e y=r.sin(\theta) .
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Gostaria da ajuda para a equação polar

Mensagempor sueliasuki » Seg Nov 05, 2012 08:41

Meu curso é semi presencial, então não tive aulas dessa matéria ainda, gostaria por favor que resolvesse a questão pra eu entender a resolução. Obrigada.
sueliasuki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Ago 23, 2012 18:11
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: Gostaria da ajuda para a equação polar

Mensagempor MarceloFantini » Seg Nov 05, 2012 12:53

Lembre-se que \sin (2 \theta) = 2 \sin \theta \cos \theta, logo 4 \sin (2 \theta) = 8 \sin \theta \cos \theta. Multiplicando por r^2 dos dois lados e reagrupando temos

r^4 = 4r^2 \sin (2 \theta) = 8 (r \sin \theta) (r \cos \theta).

Usando as definições que o Russman explicou, segue

r^4 = (x^2 +y^2)^2 = 8 (y) (x).

É só expandir e simplificar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Gostaria da ajuda para a equação polar

Mensagempor sueliasuki » Seg Nov 05, 2012 15:42

MarceloFantini escreveu:Lembre-se que \sin (2 \theta) = 2 \sin \theta \cos \theta, logo 4 \sin (2 \theta) = 8 \sin \theta \cos \theta. Multiplicando por r^2 dos dois lados e reagrupando temos

r^4 = 4r^2 \sin (2 \theta) = 8 (r \sin \theta) (r \cos \theta).

Usando as definições que o Russman explicou, segue

r^4 = (x^2 +y^2)^2 = 8 (y) (x).

É só expandir e simplificar.



Obrigada pela ajuda, essa matéria achei muito complicada.
sueliasuki
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Ago 23, 2012 18:11
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: Gostaria da ajuda para a equação polar

Mensagempor MarceloFantini » Seg Nov 05, 2012 15:46

É apenas falta de hábito. :)
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)