• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quadrantes

Quadrantes

Mensagempor Jhenrique » Qui Nov 01, 2012 21:39

Gostaria de saber qual é o 1º, o 2º, o 3º e o 4º quadrante no plano xz e no plano yz.

Obrigado.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Quadrantes

Mensagempor Niiseek » Qui Nov 01, 2012 22:34

Não entendi muito bem o que perguntou mas vou tentar te ajudar, me deixou muito confuso.

O quadrante se usa no plano cartesiano (x,y) onde:
1º quadrante: do 0º ao 90º
2º quadrante: do 90º ao 180º
3º quadrante: do 180º ao 270º
4º quadrante: 270º ao 360º

Te explicando melhor:

tendo X>0 e Y>0 você está no 1º quadrante.
tendo X<0 e Y>0 você está no 2º quadrante.
tendo X<0 e Y<0 você está no 3º quadrante.
tendo X>0 e Y<0 você está no 4º quadrante.

Se entendi bem você quer saber onde se localizam os quadrantes, ai está suas posições. Agora se for algo mais especifico como você perguntou, plano xz e plano yz não sei se essa resposta serve.
Niiseek
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 29, 2012 16:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Quadrantes

Mensagempor Jhenrique » Qui Nov 01, 2012 22:40

Agradeço pelo força! Mas a minha dúvida é realmente com relação aos planos xz e yz!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Quadrantes

Mensagempor MarceloFantini » Sex Nov 02, 2012 07:36

Niiseek escreveu:tendo X>0 e Z>0 você está no 1º quadrante.
tendo X<0 e Z>0 você está no 2º quadrante.
tendo X<0 e Z<0 você está no 3º quadrante.
tendo X>0 e Z<0 você está no 4º quadrante.


Apenas adaptei, analogamente para yz.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Quadrantes

Mensagempor Jhenrique » Sex Nov 02, 2012 11:03

MarceloFantini escreveu:
Niiseek escreveu:tendo X>0 e Z>0 você está no 1º quadrante.
tendo X<0 e Z>0 você está no 2º quadrante.
tendo X<0 e Z<0 você está no 3º quadrante.
tendo X>0 e Z<0 você está no 4º quadrante.


Apenas adaptei, analogamente para yz.


Na vdd, vc adaptou para xz gostaria de saber tbm para yz.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Quadrantes

Mensagempor MarceloFantini » Sex Nov 02, 2012 11:05

Não existe diferença, você sabe trocar letras.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Quadrantes

Mensagempor Jhenrique » Sex Nov 02, 2012 14:04

A convenção, então, é como na representação abaixo?

Quadrantes.PNG
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Quadrantes

Mensagempor MarceloFantini » Sex Nov 02, 2012 16:17

Em geral não perdemos tempo com esses detalhes bobos, mas se existisse uma convenção, acredito que seria esta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Quadrantes

Mensagempor Jhenrique » Sex Nov 02, 2012 22:28

Não é uma coisa tão boba assim quando se estuda geometria descritiva e se percebe que é convenção mundial representar um objeto 3D num diedro, e não num triedro, o que eu considero um absurdo, e, como se já não bastasse, sem nem se quer definir os eixos de antemão.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D