• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio sobre vetores "calcule (u + v) . (u - v)"

Exercicio sobre vetores "calcule (u + v) . (u - v)"

Mensagempor Tiago » Sáb Set 12, 2009 18:37

Vejam bem a questão é essa abaixo.
Se | u | = | v |, calcule (u + v) . (u - v). Represente estas operações numa figura plana.
De todas as formas que eu calculei o resultado é zero.
se a multiplicação do soma e subtração obtendo de u e v o valor zero.
penso que sendo o valor zero o angulo formado por eles é 90º, são ortogonais.
Não sei resolver essa questão com muita clareza, peço ajuda para iniciar uma linha de raciocinio mais clara
para mim poder continuar até que seja solucionado.
Obrigado.
Tiago
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Set 12, 2009 18:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Exercicio sobre vetores "calcule (u + v) . (u - v)"

Mensagempor Tiago » Dom Set 13, 2009 09:28

Fui procurar ajuda e tive a certeza que:
(u + v).(u - v) = u.u - u.v + v.u - v.v
(u + v).(u - v) = |u|² - u.v + u.v - |v|²
(u + v).(u - v) = |u|² - |v|² = 0

Então, realmente (u + v) e (u - v) são perpendiculares.
Tiago
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Set 12, 2009 18:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}